790 research outputs found

    A Note on Charged Black Holes in AdS space and the Dual Gauge Theories

    Full text link
    We study the thermodynamics and the phase structures of Reissner-Nordstrom and Born-Infeld black holes in AdS space by constructing ``off-shell'' free energies using thermodynamic quantities derived directly from the action. We then use these results to propose ``off-shell'' effective potentials for the respective boundary gauge theories. The saddle points of the potentials describe all the equilibrium phases of the gauge theories.Comment: LaTeX, 21+1 pages, 7 figure

    Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings

    Full text link
    We show that quasi-long-range (QLR) pair correlations that decay asymptotically with scaling r(d+1)r^{-(d+1)} in dd-dimensional Euclidean space Rd\mathbb{R}^d, trademarks of certain quantum systems and cosmological structures, are a universal signature of maximally random jammed (MRJ) hard-particle packings. We introduce a novel hyperuniformity descriptor in MRJ packings by studying local-volume-fraction fluctuations and show that infinite-wavelength fluctuations vanish even for packings with size- and shape-distributions. Special void statistics induce hyperuniformity and QLR pair correlations.Comment: 10 pages, 3 figures; changes to figures and text based on review process; accepted for publication at Phys. Rev. Let

    Solitonic Phase in Manganites

    Full text link
    Whenever a symmetry in the ground state of a system is broken, topological defects will exist. These defects are essential for understanding phase transitions in low dimensional systems[1]. Excitingly in some unique condensed matter systems the defects are also the low energy electric charge excitations. This is the case of skyrmions in quantum Hall ferromagnets[2] and solitons in polymers[3]. Orbital order present in several transitions metal compounds[4-6] could give rise to topological defects. Here we argue that the topological defects in orbital ordered half doped manganites are orbital solitons. Surprisingly, these solitons carry a fractional charge of ±\pme/2, and whenever extra charge is added to the system an array of solitons is formed and an incommensurate solitonic phase occurs. The striking experimental asymmetry in the phase diagram as electrons or holes are added to half doped manganites[7-12], is explained by the energy difference between positive and negative charged solitons. Contrary to existent models that explain coexistence between phases in manganites as an extrinsic effect[13-14], the presence of inhomogeneities is naturally explained by the existence of solitonic phases. The occurrence and relevance of orbital solitons might be a general phenomena in strongly correlated systems.Comment: 10 pages, 5 figures include

    Phase diagram for Coulomb-frustrated phase separation in systems with negative short-range compressibility

    Full text link
    Using numerical techniques and asymptotic expansions we obtain the phase diagram of a paradigmatic model of Coulomb frustrated phase separation in systems with negative short-range compressibility. The transition from the homogeneous phase to the inhomogeneous phase is generically first order in isotropic three-dimensional systems except for a critical point. Close to the critical point, inhomogeneities are predicted to form a BCC lattice with subsequent transitions to a triangular lattice of rods and a layered structure. Inclusion of a strong anisotropy allows for second- and first-order transition lines joined by a tricritical point.Comment: 4 pages, 3 figures. Improved figures and presentatio

    Nonequilibrium Phase Transitions and a Nonequilibrium Critical Point from Anti-de Sitter Space and Conformal Field Theory Correspondence

    Get PDF
    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly-interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear non-ballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.Comment: 5 pages, 2 figures; v2: slightly short version is published in PRL. The title is changed in the PRL forma

    Nonaffine Correlations in Random Elastic Media

    Full text link
    Materials characterized by spatially homogeneous elastic moduli undergo affine distortions when subjected to external stress at their boundaries, i.e., their displacements \uv (\xv) from a uniform reference state grow linearly with position \xv, and their strains are spatially constant. Many materials, including all macroscopically isotropic amorphous ones, have elastic moduli that vary randomly with position, and they necessarily undergo nonaffine distortions in response to external stress. We study general aspects of nonaffine response and correlation using analytic calculations and numerical simulations. We define nonaffine displacements \uv' (\xv) as the difference between \uv (\xv) and affine displacements, and we investigate the nonaffinity correlation function G=\mathcal{G} = and related functions. We introduce four model random systems with random elastic moduli induced by locally random spring constants, by random coordination number, by random stress, or by any combination of these. We show analytically and numerically that G\mathcal{G} scales as A |\xv|^{-(d-2)} where the amplitude AA is proportional to the variance of local elastic moduli regardless of the origin of their randomness. We show that the driving force for nonaffine displacements is a spatial derivative of the random elastic constant tensor times the constant affine strain. Random stress by itself does not drive nonaffine response, though the randomness in elastic moduli it may generate does. We study models with both short and long-range correlations in random elastic moduli.Comment: 22 Pages, 18 figures, RevTeX

    Numerical simulations of two dimensional magnetic domain patterns

    Full text link
    I show that a model for the interaction of magnetic domains that includes a short range ferromagnetic and a long range dipolar anti-ferromagnetic interaction reproduces very well many characteristic features of two-dimensional magnetic domain patterns. In particular bubble and stripe phases are obtained, along with polygonal and labyrinthine morphologies. In addition, two puzzling phenomena, namely the so called `memory effect' and the `topological melting' observed experimentally are also qualitatively described. Very similar phenomenology is found in the case in which the model is changed to be represented by the Swift-Hohenberg equation driven by an external orienting field.Comment: 8 pages, 8 figures. Version to appear in Phys. Rev.

    Screening effects in Coulomb frustrated phase separation

    Full text link
    We solve a model of phase separation among two competing phases frustrated by the long-range Coulomb interaction in two and three dimensions (2D/3D) taking into account finite compressibility effects. In the limit of strong frustration in 2D, we recover the results of R. Jamei, S. Kivelson, and B. Spivak, Phys. Rev. Lett. 94, 056805 (2005) and the system always breaks into domains in a narrow range of densities, no matter how big is the frustration. For weak frustration in 2D and for arbitrary frustration in 3D the finite compressibility of the phases is shown to play a fundamental role. Our results clarify the different role of screening in 2D and 3D systems. We discuss the thermodynamic stability of the system near the transition to the phase separated state and the possibility to observe it in real systems.Comment: 8 pages, 8 figure

    Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres

    Full text link
    Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations, resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wavenumber nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations. A numerical and analytical analysis of the pore-size distribution for a binary MRJ system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.Comment: 40 pages, 15 figure
    corecore