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We find novel phase transitions and critical phenomena that occur only outside the linear-response

regime of current-driven nonequilibrium states. We consider the strongly interacting ð3þ 1Þ-dimensional

N ¼ 4 large-Nc SUðNcÞ supersymmetric Yang-Mills theory with a single flavor of fundamental N ¼ 2

hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity

by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order

phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite

current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We

propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual

theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed

as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals.

The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical

points.

DOI: 10.1103/PhysRevLett.109.120602 PACS numbers: 05.70.Ln, 05.70.Jk, 11.25.Tq

Introduction.—Nonequilibrium physics is one of the
central subjects in modern physics. Although the linear
response theory gives the transport coefficients at the vi-
cinity of thermal equilibrium, its extension to the nonlinear
regime is still a great challenge. In this Letter, we apply the
anti–de Sitter space (AdS)/conformal field theory (CFT)
correspondence [1,2] to the study of nonequilibrium phys-
ics in the nonlinear regime. AdS/CFT correspondence is a
map between a strongly interacting quantum gauge theory
and a classical gravity. The map is essentially established
at the level of microscopic theory. However, it also pro-
vides a new picture for statistical mechanics. The macro-
scopic physics, such as thermodynamics, of the gauge
particles appears naturally in terms of the black hole
physics on the gravity side [3].

Usually, a drawback of AdS/CFT is that we need to deal
with an idealized gauge theory that is not exactly realized
in nature at the microscopic level, in order to ensure that
the correspondence is well defined. However, the aim of
nonequilibrium statistical mechanics is to describe macro-
scopic properties common to a wide range of many-body
systems regardless of the details of each microscopic the-
ory. Our ultimate goal is to obtain new information on such
macroscopic physics that is shared by the actual systems in
nature. Phase transition and critical phenomena are ideal
places to look for such information in light of their possible
universality.

In this Letter, we study nonequilibrium phase transitions
[4] by using the AdS/CFT correspondence. Our system
consists of strongly interacting gauge-theory plasma driven
to the nonequilibrium steady state (NESS) by a constant
current. We discover novel nonequilibrium phase transi-
tions and a nonequilibrium critical point in the nonlinear

regime. We develop a formalism to analyze the nonequi-
librium phase transitions as well: we propose NESS ana-
logues of thermodynamic potential and critical exponents.
Our phase transitions are associated with the nonlinear

conductivity of our system. It has been shown in Ref. [5]
that the gauge-theory plasma, which will be defined in
detail later, exhibits negative differential conductivity
(NDC) in low current-density regions. This NDC is cate-
gorized as S-shaped NDC (SNDC) in Ref. [6]. Here, the
differential conductivity is defined as @J=@E, where J and
E are the current density and the external electric field
acting on the charge carriers, respectively. The difference
from the conventional conductivity � ¼ J=E is that the
differential conductivity here can be either negative or
positive, whereas � cannot be negative. In fact, SNDC
has been experimentally observed in various current-driven
systems [6], including in systems of strongly correlated
electrons (for e.g., see Ref. [7]). It has been shown in
Ref. [5] that the NDC is converted to positive differential
conductivity (PDC) in high current-density regions. The
transition from NDC to PDC was observed to be smooth in
Ref. [5]: it is a crossover.
In this Letter, we discover first-order and second-order

phase transitions between NDC and PDC. We also observe
critical phenomena at the critical point. As far as the author
knows, the current-driven nonequilibrium phase transitions
between NDC and PDC, and the associated critical point,
have been reported neither experimentally nor theoreti-
cally so far: the present work provides a new model of
nonequilibrium phase transitions and nonequilibrium criti-
cal points.
Microscopic theory.—We choose our microscopic

theory by asking how much of its AdS/CFT duality is
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established, rather than asking whether the microscopic
details are realized in nature, since we are interested in
only the macroscopic properties of NESS that may be
independent of the microscopic details. One of the gauge
theories whose AdS/CFT duality is well established is the
ð3þ 1Þ-dimensional strongly-coupled SUðNcÞ N ¼ 4
super-symmetric Yang-Mills theory (N ¼ 4 SYM) at the
large-Nc limit with a single flavor of fundamental N ¼ 2
hypermultiplet. This is a supersymmetric cousin of quan-
tum chromodynamics (QCD), but its supersymmetry is
broken at finite temperatures. The N ¼ 4 SYM sector
(gluon sector) contains the gauge particles in the adjoint
representation, which we call ‘‘gluons’’ in this Letter. The
N ¼ 2 hypermultiplet sector (quark sector) contains par-
ticles in the fundamental representation and antifundamen-
tal representation; we call these particles ‘‘quarks’’ and
‘‘antiquarks,’’ respectively. The quark (antiquark) carries a
unit of positive (negative) quark charge. These particles
play the role of, for example, electrons and holes in con-
densed matter, that is, the role of charge carriers. The
interaction among these particles is mediated by the glu-
ons; the gluons play the role of phonons, for example.

We consider the conductivity associated with the quark
charge, and it is the quark-charge current that drives the
quark sector out of equilibrium. NESS is realized in the
following manner [8]. We set the large-Nc limit that makes
the degree of freedom (DOE) of the gluon sector [which is
OðN2

cÞ� sufficiently larger than that of the quark sector
[which is OðNcÞ�. We also set the gluon sector equilibrium
at a definite temperature T. The interaction between the
gluon sector and the quark sector generates a dissipation in
the presence of the quark current: the gluons absorb the
momentum and the energy of the charge carriers. Because
of the large DOE, the heat capacity of the gluon sector is
sufficiently large, and the temperature of the gluon sector is
well approximated as a constant. The gluon sector plays
the role of heat bath, and the NESS of the quark sector is
realized by putting the dissipation into the heat bath and the
work of the external field in balance.

Let us specify the conditions we impose on the system.
We consider a neutral system where the total quark-charge
density is zero. This means that the finite current is realized
by equal numbers of quarks and antiquarks flowing in
opposite directions. The system works as an insulator
when E and T are sufficiently small compared to the
mass of the quark, but a strong enough electric field will
break the insulation [9,10]. Our charge carriers are those
pair created by the external field [11] in the insulation
breaking. We assume that the system is steady and homo-
geneous. We also assume that the system has an infinitely
large volume: note that we are not dealing with mesoscopic
systems. We consider current-driven phenomena, and
choose J (the quark-charge current density) as our control
parameter. In this sense, E, the external field acting on the
quark charge, is taken as a function of J. We choose the

electric field (and hence the current) to be in the x direc-
tion. We employ the natural units c ¼ @ ¼ kB ¼ 1.
Nonlinear conductivity in AdS/CFT.—The gravity dual

of our microscopic theory is the so-calledD3�D7 system
[12]. The computational technique of nonlinear conductiv-
ity has been proposed in Ref. [11] in the framework of the
AdS/CFT correspondence, and we follow it. We sketch the
idea of Ref. [11] below to define our notation, and one may
consult Refs. [11,12] for more details. Our proposals for
thermodynamic potential and critical exponents shall be
given later.
The gluon sector at finite temperature is mapped to the

gravity theory on a curved geometry, which is a direct
product of a five-dimensional AdS-Schwarzschild black
hole (AdS-BH) and S5 [3]. The metric of the AdS-BH

part is given by ds2¼� 1
z2

ð1�z4=z4HÞ2
1þz4=z4H

dt2þ 1þz4=z4H
z2

d~x2þdz2

z2
,

where z (0 � z � zH) is the radial coordinate of the black
hole geometry [13]. The AdS-BH has a horizon at z ¼ zH
and a boundary at z ¼ 0. The Hawking temperature, which
corresponds to the temperature of the gluon sector (hence

that of the heat bath), is given by T ¼ ffiffiffi
2

p
=ð�zHÞ; ~x and t

denote the ð3þ 1Þ-dimensional spacetime coordinates on
which the gauge theory is defined. The metric of the S5 part
is given by d�2

5 ¼ d�2 þ sin2�dc 2 þ cos2�d�2
3, where

0 � � � �=2, and d�d is the volume element of the unit
d-dimensional sphere. The radius of the S5 part is taken to
be 1 for simplicity. This is equivalent to choosing the ’t
Hooft coupling � of the gauge theory at � ¼ ð2�Þ2=2.
The quark sector ismapped to aD7-brane [14] embedded

to the above geometry. The three-dimensional part of the
D7-brane is wrapped on the S3 part in S5, the radius of
which is given by cos�: the configuration of theD7-brane is
specified by the function �ðzÞ [12]. We employ the probe
approximation where the backreaction of the D7-brane to
the AdS-BH is neglected. This is justified at the large-Nc

limit, and is consistentwith the picture of theAdS-BHas the
heat bath. The behavior of �ðzÞ at the vicinity of the bound-
ary is related to the current quark mass mq [12] as �ðzÞ ¼
mqzþ 1

2 ½h �qqi=N þm3
q=3�z3 þOðz5Þ. Here, h �qqi denotes

the chiral condensate [15]. Throughout the analysis, we fix
mq at a designed value. There is a Uð1Þ gauge field A� on

the D7-brane. E and J are related to Ax through Axðz; tÞ ¼
�Etþ constþ Jð2NÞ�1z2 þOðz4Þ, whereN ¼ Nc=ð2�Þ2
in our convention, and we have employed the gauge
@xAt ¼ 0 [11]. The dynamics of �ðzÞ and Axðz; tÞ is
governed by the D7-brane action, SD7 ¼

R
dtd3xdzLD7,

where LD7 is explicitly written as LD7 ¼
�Ngxxcos

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgttjgxxgzz � gzzð _AxÞ2 þ jgttjðA0

xÞ2
q

[11].

Here, the prime (the dot) denotes the differentiation with
respect to z (t); gtt; gxx; and gzz are the components of the

induced metric on theD7-brane, and they are equal to those
of the metric of AdS-BH except for gzz ¼ 1=z2 þ �0ðzÞ2. If
we regard z as a ‘‘time coordinate,’’ J ¼ @LD7=@A

0
x is a
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conserved ‘‘canonical momentum,’’ since LD7 does not
contain Ax explicitly. Then it is convenient to introduce

a ‘‘Routhian’’ ~LD7 ¼ LD7 � A0
x@LD7=@A

0
x [16,17],

which is given in terms of _Ax, J, �, and �0: ~LD7 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzðgxx � _A2

x=jgttjÞðN2jgttjg2xxcos6�� J2Þ
q

[11]. The

Euler-Lagrange equation from ~LD7 determines �ðzÞ under
given E ¼ � _Ax and J. The relationship between E and
J is determined by requesting the on-shell D7-brane

action to be real valued. This condition yields � ¼
NTðe2 þ 1Þ1=4cos3�ðz�Þ, where z� ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 1

p
� e�1=2zH

and e ¼ 2E=ð� ffiffiffiffiffiffi
2�

p
T2Þ [11]; z ¼ z� is the location where

the inside of the square root in ~LD7 touches zero [11].
We need numerical analysis to obtain �ðz�Þ explicitly.

The boundary conditions we employ are �ðzÞ=zjz¼0 ¼ mq

and �0jz¼z� ¼ ½B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þC2

p
�=ðCz�Þ. Here B¼3z8Hþ

2z4Hz
4�þ3z8� and C ¼ 3ðz8� � z8HÞ tan�ðz�Þ. The condition

for �0jz¼z� comes from the equation of motion (EOM) at

z ¼ z� [5,9] with the assumption �ðz�Þ � �=2. Note that
�0jz¼z� is given in terms of E, T, and J for given � and Nc.

After the solution �ðzÞ is obtained, we estimate mq from

�ðzÞ=zjz¼0 as a function of E, T, and J. We choose E (under
given T and J) so that mq agrees with the designed value.

Since the numerical analysis becomes unstable at z ¼ 0,
z ¼ z�, and at z ¼ zH, we avoid these points by introduc-
ing small cutoffs in the numerical computations.

Nonequilibrium phase transitions.—Let us fix Nc ¼ 40
for numerical computation. We fix mq ¼ 1 for simplicity.

The J-E characteristics at various T are shown in Fig. 1.
The system exhibits NDC in the small-J region, whereas
PDC is seen in the large-J region. The NDC region is
smoothly connected to the PDC region for T < Tc, show-
ing a crossover at point A. However, the curve for T > Tc

has an intermediate region (between points D and G),
where three values of E are possible at a given J. This
multivalued nature of E at a given J has never been
obtained in eariler works. In terms of the D7-brane dy-
namics, we have three different solutions to the EOM of
�ðzÞ. If we start in the small-J region, E has to jump to the
lower value at somewhere in the intermediate region, and
then PDC appears. Since E (hence �) changes discontin-
uously, we call it a first-order transition. The boundary
between the crossover regime and the first-order regime
is found at T ¼ 3:4365� 10�1 ¼ Tc. The differential re-
sistivity @E=@J diverges at J ¼ 1:86� 10�2 ¼ Jc (indi-
cated by B), although � changes continuously. We call this
transition at ðT; JÞ ¼ ðTc; JcÞ a second-order transition.
The minimum value of E for each curve is the critical
electric field for insulation breaking.
An immediate question is how to determine the transi-

tion point in the intermediate region. In equilibrium
systems, the stable phase is the phase of minimum thermo-
dynamic potential (TP), and the transition point is where
the two phases share a common TP. However, the general-
ization of the idea of TP into nonequilibrium cases has not
been completely established. One way to evaluate the
NESS generalization of TP is to use the Maxwell construc-
tion [18]. However, this method works only for the pairs of
conjugate variables. In our case, we need a TP as a function
of J. The variable conjugate to J is Axjz¼0 (but not E),
which explicitly depends on time, and we cannot construct
a time-independent TP by integrating Axjz¼0 with respect
to J: the method of Maxwell construction does not work
for our purpose. Note that the Euclidean on-shell action of
D7-brane cannot be employed as the TP in our system,
since the reflection of real time is essential in nonequilib-
rium systems. If we insist with the Euclidean formalism,
we encounter unremovable conical singularity in the grav-
ity dual [19]. In this sense, we do not employ the Euclidean
action proposed in Ref. [20]. We need a new proposal for
NESS generalization of TP within the Minkowski
signature.
Interestingly, we can determine the most stable phase by

considering the Hamiltonian of theD7-brane in the gravity
dual. The question is whichD7-brane configuration is most
stable among the three possible solutions. Since the dy-
namics of the D7-brane in the dual picture is governed
by classical mechanics, the most stable configuration is
that of the smallest Hamiltonian. We have seen that the

D7-brane dynamics is governed by ~LD7. Therefore, let

us construct the Hamiltonian density ~H D7 ¼
_Ax@

~LD7=@ _Ax � ~LD7, which is explicitly given by
~H D7 ¼

gxx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgttjgzz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2cos6�jgttjg2xx�J2

jgttjgxx�E2

r
[21]. Note that ~H D7 is regu-

lar at the horizon (where gtt ¼ 0) and free from the IR
divergence discussed in Refs. [8,20]. The divergence at the

horizon in ~LD7 is canceled by that in _Ax@
~LD7=@ _Ax within

FIG. 1. The J-E curves at T ¼ 3:4379� 10�1 > Tc (circle),
T ¼ 3:4365� 10�1 ¼ Tc (box), and T ¼ 3:4337� 10�1 < Tc
(triangle). Inset: the phase diagram. CP denotes the critical
point.
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the Legendre transformation. We propose to define the
thermodynamic potential per unit 3d volume in our system

by ~HD7ðT; J; mqÞ ¼ lim�!0½
R
zH
� dz ~H D7 � Lcountð�Þ�,

where Lcount denotes the counterterms that renormalize
the divergence at the boundary z ¼ 0 (which corresponds
to UV divergence in the gauge theory). Lcount is given by
Lcount ¼ L1 þ L2 � LF þ Lf, where L1, L2, LF, and Lf

are explicitly given in Ref. [11,22]. Note that the relative
sign between LF and the others has to be flipped, compared
to the counterterms for the action, owing to the Legendre
transformation.

It is found from our numerical analysis that the configu-
rations between F and G have the smallest ~HD7 compared
to those between E and F and those between D and E at a
given J. Therefore, the transition point between NDC and
PDC is D or F, as is indicated by the arrow in Fig. 1. Our
system prefers the smallest dissipation under the current-
controlled setup.

The next question is how to define the critical exponents.
We find that the NDC and PDC phases are connected via
the crossover region on the phase diagram (shown in the
inset of Fig. 1): the symmetry of the system does not
change through the transition. This resembles the liquid-
gas transitions and the Mott insulator-to-metal transitions
in equilibrium systems, whose critical points are in the
same universality class of the Ising model [23]. In the
liquid-gas transitions, the critical exponents � and � are
given by 4	 / jT � Tcj� along the first-order transition

line and j	� 	cj / jP� Pcj1=� along the T ¼ Tc line.
Here, 	 and P are the density and the pressure, and 	c

and Pc their critical values, respectively. 4	 is the differ-
ence of the density between the liquid phase and the gas
phase. In the equilibrium Mott insulator-to-metal transi-
tions, the critical exponents can be detected by using the
conductivity instead of the density [23,24]. Therefore, let
us generalize the definition of the exponent � into the
nonequilibrium cases as 4� / jT � Tcj�, where the tem-
perature is that of the heat bath and4� is the difference of
the conductivity between the NDC phase and the PDC
phase along the first-order transition line. We regard 4�
as a probe of the order parameter. The pressure of the
system is not a control parameter within the present setup,
but we have J instead. Let us define a new critical exponent
~� by j�� �cj / jJ � Jcj1= ~� along the T ¼ Tc line.
The behaviors of the conductivity are plotted in

Figs. 2(a) and 2(b). Critical phenomena with � ¼ 0:52�
0:03 and ~� ¼ 3:1� 0:2 are numerically found. The con-
ductivities in the two phases and their average, along the
first-order transition line, are shown in Fig. 2(c). They
resemble the coexistence line and the law of rectilinear
diameter in the liquid-gas transitions [25]. In Figs. 2(d) and
2(e), the behaviors of the chiral condensate are shown. The
chiral condensate is more sensitive to the possible numeri-
cal errors since it is read by @3z�jz¼0: we need further
analysis to estimate the precise values of the exponents.

Currently, we observe preliminary values of the exponents

�chiral � 0:4 and ~�chiral � 3, where we have defined the
exponents by using the chiral condensate instead of the
conductivity.
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