32 research outputs found

    Interaction of pathogenic vibrio bacteria with the blood clot of the Pacific white shrimp, Litopenaeus vannamei

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2014. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 226 (2014): 102-110.In addition to its roles in hemostasis and wound repair, the blood clot plays an underappreciated role in innate immunity, where the established clot serves as a barrier to microbial penetration into the internal milieu and where the early clot entraps and immobilizes microbes that have entered wounds to the integuments. In this report we document the behavior of the pathogenic gram-negative bacterium Vibrio harveyi that has been entrapped in the fabric of the extracellular blood clot of one of its target organisms, the Pacific white shrimp, Litopenaeus vannamei. The freshly entrapped bacteria are held tightly by the clot, losing even Brownian motility, but by 1 h post-entrapment, a fraction of the bacteria have established small domains of fibrinolysis that enlarge progressively, enabling bacteria to escape from the clot's embrace. Escape is dependent on the actions of both serine- and metallo-proteases released from the bacterial cells.This research was financially supported by a student fellowship for Vorrapon Chaikeeratisak from the Royal Golden Jubilee Ph.D. program under the Thailand Research Fund (TRF) and by grant 0344360 from the National Science Foundation (PBA)

    Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection

    Get PDF
    BACKGROUND: Viral and bacterial diseases can cause mass mortalities in commercial shrimp aquaculture. In contrast to studies on the antiviral response, the responses of shrimps to bacterial infections by high throughput techniques have been reported only at the transcriptional level and not at the translational level. In this study, a proteomic analysis of shrimp hemocytes to identify differentially expressed proteins in response to a luminous bacterium Vibrio harveyi was evaluated for its feasibility and is reported for the first time. RESULTS: The two-dimensional gel electrophoresis (2-DE) patterns of the hemocyte proteins from the unchallenged and V. harveyi challenged shrimp, Penaeus monodon, at 24 and 48 h post infection were compared. From this, 27 differentially expressed protein spots, and a further 12 weakly to non-differentially regulated control spots, were selected for further analyses by the LC-ESI-MS/MS. The 21 differentially expressed proteins that could be identified by homologous annotation were comprised of proteins that are directly involved in the host defense responses, such as hemocyanin, prophenoloxidase, serine proteinase-like protein, heat shock protein 90 and alpha-2-macroglobulin, and those involved in signal transduction, such as the14-3-3 protein epsilon and calmodulin. Western blot analysis confirmed the up-regulation of hemocyanin expression upon bacterial infection. The expression of the selected proteins which were the representatives of the down-regulated proteins (the 14-3-3 protein epsilon and alpha-2-macroglobulin) and of the up-regulated proteins (hemocyanin) was further assessed at the transcription level using real-time RT-PCR. CONCLUSIONS: This work suggests the usefulness of a proteomic approach to the study of shrimp immunity and revealed hemocyte proteins whose expression were up regulated upon V. harveyi infection such as hemocyanin, arginine kinase and down regulated such as alpha-2-macroglobulin, calmodulin and 14-3-3 protein epsilon. The information is useful for understanding the immune system of shrimp against pathogenic bacteria

    A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells.

    Get PDF
    Dynamic instability, polarity, and spatiotemporal organization are hallmarks of the microtubule cytoskeleton that allow formation of complex structures such as the eukaryotic spindle. No similar structure has been identified in prokaryotes. The bacteriophage-encoded tubulin PhuZ is required to position DNA at mid-cell, without which infectivity is compromised. Here, we show that PhuZ filaments, like microtubules, stochastically switch from growing in a distinctly polar manner to catastrophic depolymerization (dynamic instability) both in vitro and in vivo. One end of each PhuZ filament is stably anchored near the cell pole to form a spindle-like array that orients the growing ends toward the phage nucleoid so as to position it near mid-cell. Our results demonstrate how a bacteriophage can harness the properties of a tubulin-like cytoskeleton for efficient propagation. This represents the first identification of a prokaryotic tubulin with the dynamic instability of microtubules and the ability to form a simplified bipolar spindle

    Shrimp alpha-2-macroglobulin prevents the bacterial escape by inhibiting fibrinolysis of blood clots.

    Get PDF
    Proteomic analysis of the hemocytic proteins of Penaeus monodon (Pm) has previously shown that alpha-2-macroglobulin (A2M) was among the proteins that showed substantially altered expression levels upon Vibrio harveyi infection. Therefore, in this study its potentially important role in the response of shrimp to bacterial infection was further characterized. The yeast two-hybrid system revealed that the receptor binding domain of PmA2M interacted with the carboxyl-terminus of one or both of the transglutaminase type II isoforms, which are key enzymes involved in the shrimp clotting system. In accord with this, PmA2M was found to be localized on the extracellular blood clots and to colocalize with clottable proteins. RNA interference (RNAi)-mediated knockdown of A2M transcript levels reduced the PmA2M transcript levels (∼94%) and significantly reduced the bacterial seizing ability of the clotting system, resulting in an up to 3.3-fold higher number of V. harveyi that systemically disseminated into the circulatory system at 5 min post-infection before subsequent clearance by the immune system. Furthermore, an appearance of PmA2M depleted clots in the presence of V. harveyi strikingly demonstrated fibrinolysis zones surrounding the bacteria. This study provides the first evidence of the vital role of PmA2M in enhancing bacterial sequestration by protecting blood clots against fibrinolysis
    corecore