21 research outputs found

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure

    High-precision branching-ratio measurement for the superallowed β\u3csup\u3e+\u3c/sup\u3e emitter 74Rb

    Get PDF
    A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B 0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft̄ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region. © 2013 American Physical Society

    High-precision half-life and branching-ratio measurements for superallowed Fermi β \u3csup\u3e+\u3c/sup\u3e emitters at TRIUMF - ISAC

    Get PDF
    A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF\u27s Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB) corrections in superallowed Fermi β decays. © Owned by the authors, published by EDP Sciences, 2014

    Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Get PDF
    The 8π spectrometer, located at TRIUMF-ISAC, was the world\u27s most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Csm decay scheme, are shown. With sufficient statistics, measurements of conversion coefficients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted

    Cellular orientation is guided by strain gradients

    No full text
    The strain-induced reorientation response of cyclically stretched cells has been well characterized in uniform strain fields. In the present study, we comprehensively analyse the behaviour of human fibroblasts subjected to a highly non-uniform strain field within a polymethylsiloxane microdevice. Our results indicate that the strain gradient amplitude and direction regulate cell reorientation through a coordinated gradient avoidance response. We provide critical evidence that strain gradient is a key physical cue that can guide cell organization. Specifically, our work suggests that cells are able to pinpoint the location under the cell of multiple physical cues and integrate this information (strain and strain gradient amplitudes and directions), resulting in a coordinated response. To gain insight into the underlying mechanosensing processes, we studied focal adhesion reorganization and the effect of modulating myosin-II contractility. The extracted focal adhesion orientation distributions are similar to those obtained for the cell bodies, and their density is increased by the presence of stretching forces. Moreover, it was found that the myosin-II activity promoter calyculin-A has little effect on the cellular response, while the inhibitor blebbistatin suppresses cell and focal adhesion alignment and reduces focal adhesion density. These results confirm that similar internal structures involved in sensing and responding to strain direction and amplitude are also key players in strain gradient mechanosensing and avoidance

    Superallowed Fermi β decay studies at TRIUMF-ISAC

    No full text
    A program of high-precision superallowed Fermi β decay studies is being carried out at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility at TRIUMF. Recent high-precision branching ratio measurements for the superallowed decays of 74Rb and 26Alm, as well as a half-life measurement for 26Alm that is the most precise half-life measurement for any superallowed emitter to date, are reported. These results provide demanding tests of the theoretical isospin symmetry breaking corrections in superallowed Fermi β decays. © 2013 AIP Publishing LLC
    corecore