56 research outputs found

    Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes

    Get PDF
    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest—fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans

    Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM)

    Full text link
    BackgroundTwin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM.MethodsWe carried out whole exome sequencing (WES) of genomic DNA from neonates born of Africanñ American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls.ResultsWe identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases.ConclusionsWe conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in Africanñ Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.Rare damaging mutations in fetal innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by preterm premature rupture of membranes. An increased risk of preterm birth may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140041/1/mgg3330.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140041/2/mgg3330_am.pd

    Macrosomia and large for gestational age in Asia:One size does not fit all

    Get PDF
    Macrosomia, usually defined as infant birth weight of >= 4000 g, does not consider gestational age, sex, or country/region-specific differences in mean birth weight and maternal body weight. This issue is particularly relevant for Asia, where 60% of the world's population lives, due to variations in maternal size and birth weights across populations. Large for gestational age (LGA), defined as birth weight > 90th centile, is a more sensitive measure as it considers gestational age and sex, though it is dependent on the choice of growth charts. We aimed to review reporting of macrosomia and LGA in Asia. We reviewed the literature on prevalence and risk of macrosomia and LGA in Asia over the last 29 years. Prevalence of macrosomia ranged from 0.5% (India) to 13.9% (China) while prevalence of LGA ranged from 4.3% (Korea) to 22.1% (China), indicating substantial variation in prevalence within and between Asian countries. High pre-pregnancy body mass index, excessive gestational weight gain, and impaired glucose tolerance conferred risk of macrosomia/LGA. Incidence of macrosomia and LGA varies substantially within and between Asian countries, as do the growth charts and definitions. The latter makes it impossible to make comparisons but suggests differences in intrauterine growth between populations. Reporting LGA, using standardized country/regional growth charts, would better capture the incidence of high birth weight and allow for comparison and identification of contributing factors. Better understanding of local drivers of excessive intrauterine growth could enable development of improved strategies for prevention and management of LGA

    Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis

    Get PDF
    • 

    corecore