4,773 research outputs found

    Explosive events associated with a surge

    Full text link
    The solar atmosphere contains a wide variety of small-scale transient features. Here, we explore the inter-relation between some of them such as surges, explosive events and blinkers via simultaneous spectral and imaging data taken with the TRACE imager, the SUMER, and CDS spectrometers on board SoHO, and SVST La Palma. The alignment of all data both in time and solar XY shows that SUMER line profiles, which are attributed to explosive events, are due to a surge phenomenon. The surge is triggered, most probably, by one or more Elerman bombs which are best visible in Halpha +-350 A but were also registered by TRACE Fe IX/X 171 A and correspond to a strong radiance increase in the CDS Mg IX 368.07 A line. With the present study we demonstrate that the division of small-scale transient events into a number of different subgroups, for instance explosive events, blinkers, spicules, surges or just brightenings, is ambiguous, implying that the definition of a feature based only on either spectroscopic or imaging characteristics as well as insufficient spectral and spatial resolution can be incomplete.Comment: 17 pages, 7 figures, 1 tabl

    Limits on the evolution of galaxies from the statistics of gravitational lenses

    Full text link
    We use gravitational lenses from the Cosmic Lens All-Sky Survey (CLASS) to constrain the evolution of galaxies since redshift z1z \sim 1 in the current \LCDM cosmology. This constraint is unique as it is based on a mass-selected lens sample of galaxies. Our method of statistical analysis is the same as in Chae (2003). We parametrise the early-type number density evolution in the form of (1+z)νn(1+z)^{\nu_n} and the velocity dispersion as (1+z)νv(1+z)^{\nu_v}. We find that νn=0.110.89+0.82\nu_n=-0.11^{+0.82}_{-0.89} (1σ1\sigma) if we assume νv=0\nu_v =0, implying that the number density of early-type galaxies is within 50% to 164% of the present-day value at redshift z=1z=1. Allowing the velocity dispersion to evolve, we find that νv=0.40.4+0.5\nu_v=-0.4^{+0.5}_{-0.4} (1σ1\sigma), indicating that the velocity dispersion must be within 57% and 107% of the present-day value at z=1z=1. These results are consistent with the early formation and passive evolution of early-type galaxies. More stringent limits from lensing can be obtained from future large lens surveys and by using very high-redshift quasars (z \ga 5) such as those found from the Sloan Digital Sky Survey.Comment: 10 pages (preprint format), 2 figures, ApJL in press (December 20th issue

    The variation of relative magnetic helicity around major flares

    Full text link
    We have investigated the variation of magnetic helicity over a span of several days around the times of 11 X-class flares which occurred in seven active regions (NOAA 9672, 10030, 10314, 10486, 10564, 10696, and 10720) using the magnetograms taken by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). As a major result we found that each of these major flares was preceded by a significant helicity accumulation over a long period (0.5 to a few days). Another finding is that the helicity accumulates at a nearly constant rate and then becomes nearly constant before the flares. This led us to distinguish the helicity variation into two phases: a phase of monotonically increasing helicity and the following phase of relatively constant helicity. As expected, the amount of helicity accumulated shows a modest correlation with time-integrated soft X-ray flux during flares. However, the average helicity change rate in the first phase shows even stronger correlation with the time-integrated soft X-ray flux. We discuss the physical implications of this result and the possibility that this characteristic helicity variation pattern can be used as an early warning sign for solar eruptions

    Observation of First-Order Metal-Insulator Transition without Structural Phase Transition in VO_2

    Full text link
    An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based two-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.Comment: 4 pages, 4 figure

    Spectral measure of heavy tailed band and covariance random matrices

    Full text link
    We study the asymptotic behavior of the appropriately scaled and possibly perturbed spectral measure μ\mu of large random real symmetric matrices with heavy tailed entries. Specifically, consider the N by N symmetric matrix YNσY_N^\sigma whose (i,j) entry is σ(i/N,j/N)Xij\sigma(i/N,j/N)X_{ij} where (Xij,0<i<j+1<)(X_{ij}, 0<i<j+1<\infty) is an infinite array of i.i.d real variables with common distribution in the domain of attraction of an α\alpha-stable law, 0<α<20<\alpha<2, and σ\sigma is a deterministic function. For a random diagonal DND_N independent of YNσY_N^\sigma and with appropriate rescaling aNa_N, we prove that the distribution μ\mu of aN1YNσ+DNa_N^{-1}Y_N^\sigma + D_N converges in mean towards a limiting probability measure which we characterize. As a special case, we derive and analyze the almost sure limiting spectral density for empirical covariance matrices with heavy tailed entries.Comment: 31 pages, minor modifications, mainly in the regularity argument for Theorem 1.3. To appear in Communications in Mathematical Physic

    Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction

    Get PDF
    Replacing linear diffusion by a degenerate diffusion of porous medium type is known to regularize the classical two-dimensional parabolic-elliptic Keller-Segel model. The implications of nonlinear diffusion are that solutions exist globally and are uniformly bounded in time. We analyse the stationary case showing the existence of a unique, up to translation, global minimizer of the associated free energy. Furthermore, we prove that this global minimizer is a radially decreasing compactly supported continuous density function which is smooth inside its support, and it is characterized as the unique compactly supported stationary state of the evolution model. This unique profile is the clear candidate to describe the long time asymptotics of the diffusion dominated classical Keller-Segel model for general initial data.Comment: 30 pages, 2 figure
    corecore