16 research outputs found

    P2X7 Receptor Promotes Mouse Mammary Cancer Cell Invasiveness and Tumour Progression, and Is a Target for Anticancer Treatment

    Get PDF
    The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment

    P2Y11 Agonism Prevents Hypoxia/Reoxygenation- and Angiotensin II-Induced Vascular Dysfunction and Intimal Hyperplasia Development

    No full text
    Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions

    Hypoxia/Reoxygenation Inhibits P2Y11 Receptor Expression and Its Immunosuppressive Activity in Human Dendritic Cells

    No full text
    International audienceHigh concentrations of extracellular ATP (eATP) resulting from cell damage may be found during an ischemia/reperfusion (I/R) episode at the site of injury. eATP activates purinergic receptors in dendritic cells (DCs) and may inhibit inflammation. This immunosuppressive activity could be of interest in the field of I/R, which is an inflammatory condition involved in myocardial infarction, stroke, and solid organ transplantation. However, the specific purinergic receptor responsible for this effect remains to be identified. In this study, we report that eATP induced maturation of human monocyte-derived DCs. Additionally, eATP inhibited IL-12 production whereas IL-10 levels remained unchanged in activated DCs. These effects were prevented by the P2Y11R antagonist NF340. Interestingly, a 5-h hypoxia prevented the effects of eATP on cytokine production whereas a 1-h hypoxia did not affect the eATP-mediated decrease of IL-12 and IL-6. We showed a time-dependent downregulation of P2Y11R at both mRNA and protein levels that was prevented by knocking down hypoxia-inducible factor-1α. In this study, we showed an immunosuppressive role of P2Y11R in human DCs. Additionally, we demonstrated that the time-dependent downregulation of P2Y11R by hypoxia orientates DCs toward a proinflammatory phenotype that may be involved in post-I/R injuries as observed after organ transplantation

    P2Y11 Agonism Prevents Hypoxia/Reoxygenation- and Angiotensin II-Induced Vascular Dysfunction and Intimal Hyperplasia Development

    No full text
    Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions

    Rock inhibition promotes NaV1.5 sodium channel-dependent SW620 colon cancer cell invasiveness

    No full text
    International audienceThe acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers

    Sodium Channel Nav1.5 Controls Epithelial-to-Mesenchymal Transition and Invasiveness in Breast Cancer Cells Through its Regulation by the Salt-Inducible Kinase-1

    No full text
    International audienceAbstract Loss of epithelial polarity and gain in invasiveness by carcinoma cells are critical events in the aggressive progression of cancers and depend on phenotypic transition programs such as the epithelial-to-mesenchymal transition (EMT). Many studies have reported the aberrant expression of voltage-gated sodium channels (Na V ) in carcinomas and specifically the Na V 1.5 isoform, encoded by the SCN5A gene, in breast cancer. Na V 1.5 activity, through an entry of sodium ions, in breast cancer cells is associated with increased invasiveness, but its participation to the EMT has to be clarified. In this study, we show that reducing the expression of Na V 1.5 in highly aggressive human MDA-MB-231 breast cancer cells reverted the mesenchymal phenotype, reduced cancer cell invasiveness and the expression of the EMT-promoting transcription factor SNAI1 . The heterologous expression of Na V 1.5 in weakly invasive MCF-7 breast cancer cells induced their expression of both SNAI1 and ZEB1 and increased their invasive capacities. In MCF-7 cells the stimulation with the EMT-activator signal TGF-β1 increased the expression of SCN5A . Moreover, the reduction of the salt-inducible kinase 1 (SIK1) expression promoted Na V 1.5-dependent invasiveness and expression of EMT-associated transcription factor SNAI1. Altogether, these results indicated a prominent role of SIK1 in regulating Na V 1.5-dependent EMT and invasiveness

    Immature human dendritic cells enhance their migration through KCa3.1 channel activation

    No full text
    International audienceMigration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14 +-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca 2+ entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100 nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization

    Kinetic modelling of myocardial necrosis biomarkers offers an easier, reliable and more acceptable assessment of infarct size

    No full text
    International audienceInfarct size is a major prognostic factor in ST-segment elevation myocardial infarction (STEMI). It is often assessed using repeated blood sampling and the estimation of biomarker area under the concentration versus time curve (AUC) in translational research. We aimed at developing limited sampling strategies (LSS) to accurately estimate biomarker AUC using only a limited number of blood samples in STEMI patients. This retrospective study was carried out on pooled data from five clinical trials of STEMI patients (TIMI blood flow 0/1) studies where repeated blood samples were collected within 72 h after admission to assess creatine kinase (CK), cardiac troponin I (cTnI) and muscle-brain CK (CK-MB). Biomarker kinetics was assessed using previously described biomarker kinetic models. A number of LSS models including combinations of 1 to 3 samples were developed to identify sampling times leading to the best estimation of AUC. Patients were randomly assigned to either learning (2/3) or validation (1/3) subsets. Descriptive and predictive performances of LSS models were compared using learning and validation subsets, respectively. An external validation cohort was used to validate the model and its applicability to different cTnI assays, including high-sensitive (hs) cTnI. 132 patients had full CK and cTnI dataset, 49 patients had CK-MB. For each biomarker, 180 LSS models were tested. Best LSS models were obtained for the following sampling times: T4–16 for CK, T8–T20 for cTnI and T8–T16 for CK-MB for 2-sample LSS; and T4–T16–T24 for CK, T4–T12–T20 for cTnI and T8–T16–T20 for CK-MB for 3-sample LSS. External validation was achieved on 103 anterior STEMI patients (TIMI flow 0/1), and the cTnI model applicability to recommended hs cTnI confirmed. Biomarker kinetics can be assessed with a limited number of samples using kinetic modelling. This opens the way for substantial simplification of future cardioprotection studies, more acceptable for the patients

    THE VOLTAGE-GATED SODIUM CHANNEL BETA4 SUBUNIT MAINTAINS EPITHELIAL PHENOTYPE IN MAMMARY CELLS

    No full text
    International audienceThe SCN4B gene, encoding for the NaVβ4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells is not characterized. In this study, we demonstrate that reducing NaVβ4 expression in MCF10A non-cancer mammary epithelial cells generates important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably the loss of NaVβ4 induces a complete loss of epithelial organisation in cysts and increases proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of β-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, α-SMA expression. Overall, our results suggest that Navβ4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its down regulation might be a determining step in early carcinogenesis
    corecore