9 research outputs found

    On the existence and asymptotic stability of solutions for unsteady mixing-layer models

    Get PDF
    We introduce in this paper some elements for the mathematical analysis of turbulence models for oceanic surface mixing layers. We consider Richardson-number based vertical eddy diffusion models. We prove the existence of unsteady solutions if the initial condition is close to an equilibrium, via the inverse function theorem in Banach spaces. We use this result to prove the non-linear asymptotic stability of equilibrium solutions

    A multilayer method for the hydrostatic Navier-Stokes equations: A particular weak solution

    Get PDF
    In this work we present a multilayer approach to the solution of non-stationary 3D Navier-Stokes equations. We use piecewise smooth weak solutions. We approximate the velocity by a piecewise constant (in z) horizontal velocity and a linear (in z) vertical velocity in each layer, possibly discontinuous across layer interfaces. The multilayer approach is deduced by using the variational formulation and by considering a reduced family of test functions. The procedure naturally provides the mass and momentum interfaces conditions. The mass and momentum conservation across interfaces is formulated via normal flux jump conditions. The jump conditions associated to momentum conservation are formulated by means of an approximation of the vertical derivative of the velocity that appears in the stress tensor. We approximate the multilayer model for hydrostatic pressure, by using a polynomial viscosity matrix finite volume scheme and we present some numerical tests that show the main advantages of the model: it improves the approximation of the vertical velocity, provides good predictions for viscous effects and simulates re-circulations behind solid obstacles

    Oscillations Due to the Transport of Microstructures

    No full text
    corecore