6 research outputs found

    Species distribution models and climatic niche comparisons provide clues on the geographic origin of a spider invasion in the Americas

    Get PDF
    Identifying the source population of alien species is important to assess the distribution and potential effects in the invaded area. The araneid spider Cyrtophora citricola is widely distributed in Europe, Asia, and Africa; however, in the last 26 years, it has been reported in several countries across the Americas. To date, the geographic origin of the populations established in the Americas remains unclear, but considering the successful colonization after its recent arrival, assessing climatic similarities between the invaded and native geographic ranges could be useful to address this question. In this study, we used a combination of Species Distribution Models and Ordination Methods to assess the climatic match between the invaded region (the Americas) and two potential origins (southern Africa and the Mediterranean) aiming to determine the more likely origin for the populations established in the Americas. We found that the American populations of C. citricola occupy sites with climatic conditions more similar to those occupied by southern African populations, than to those occupied by the Mediterranean populations. Therefore, our results suggest a southern African rather than a Mediterranean origin for the populations established in America. In addition, our results also show that populations in America are spreading into sites that differ in climate conditions from those occupied by native populations. Further studies assessing intrinsic (e.g., physiological tolerances, plasticity, behavior, reproduction) and extrinsic (physical barriers, predator release) factors could provide further information to disentangle the mechanisms behind the geographic and climatic niche expansion of this species

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus Kjøller, Tamir Klein, Michael Kleyer, Jitka Klimešová, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf Kühn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan Llusià, Madelon Lohbeck, Álvaro López-García, Gabriela Lopez-Gonzalez, Zdeňka Lososová, Frédérique Louault, Balázs A. Lukács, Petr Lukeš, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki Mäkelä, Harri Mäkinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina Martínez-Garza, Jordi Martínez-Vilalta, Tereza Mašková, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, Céline Meredieu, Julie Messier, Ilona Mészáros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila Molnár V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka Moravcová, Alvaro Moreno-Martínez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina Müller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis Pärtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, Valério D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr Pyšek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime Réjou-Méchain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja Rüger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-García, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun Siebenkäs, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, Grégory Sonnier, Mia Vedel Sørensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana Svitková, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, Rubén Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, Lubomír Tichý, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, Péter Török, Tonantzin Tarin, José M. Torres-Ruiz, Béla Tóthmérész, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim André Vanselow, Angelica Vårhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime Villacís, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, Kátia Janaina Zanini, Amy E. Zanne, David Zelený, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia Ziemińska, Chad R. Zirbel, Georg Zizka, Irié Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et Société'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    The relationship between the mean and variation of functional traits and the geographical range size of tropical trees

    No full text
    Arealgröße ist eine zentrale Eigenschaft der Biogeographie von Tier- und Pflanzenarten. Warum manche Arten weit verbreitet sind, während andere, oft nahe verwandte Arten nur kleine Gebiete besiedeln ist eine Frage, die die Ökologie seit langem beschäftigt, aber bis heute nicht vollständig beantwortet ist. Unter den verschiedenen Faktoren, die in diesem Zusammenhang diskutiert worden sind, spielt auch die Breite der ökologischen Nische eine wichtige Rolle. Es wird im Allgemeinen davon ausgegangen, dass Arten die mit unterschiedlichen Umweltbedingungen zurecht kommen, auch größere geographische Areale besiedeln können, d.h. dass größere Areale mit breiteren ökologischen Nischen positiv korreliert sind. Die Nischenbreite wird neben anderen Faktoren durch die funktionellen Eigenschaften bestimmt, welche Arten im Laufe ihrer Evolutionsgeschichte erwerben. Interspezifische Unterschiede bezüglich funktioneller Eigenschaften können aus zwei Gründen zu Untschieden in der Nischenbreite führen: Erstens könnten bestimmte funktionelle Eigenschaften die Konkurrenzkraft von Arten oder ihre Umwelt-Tolernaz erhöhen; und zweitens könnte eine höhere intraspezifische Variabilität funktioneller Eigenschaften den Arten Anpassung an mehr unterschiedliche Lebensräume ermöglichen. In meiner Doktorarbeit untersuchte ich zwei Hypothesen bezüglich der Effekte funktioneller Eigenschaften auf Nischenbreiten und Arealgrößen von neotropischen Baumarten. Meine erste Studie beschäftigte sich mit dem Zusammenhang zwischen Arealgröße und den Mittelwerten funktioneller Eigenschaften in einer Gruppe von 35 tropischen Bäume, die gemeinsam im südlichen Costa Rica vorkommen. Ich sammelte Daten zu diesen Eigenschaften von regionalen Populationen dieser Arten und verglich sie mit der ihrer gesamten Arealgröße. Ich fand negative Auswirkungen von hoher Holzdichte und geringem Blattstickstoffgehalt auf die Arealgröße. Meine Schlussfolgerung war, dass ein konservativer, sparsamer Umgang mit Ressourcen die Arealgröße einschränkt. Die Korrelation ist allerdings nur schwach ausgeprägt, ein konservativer Umgang mit Ressourcen kann daher nur einer von mehreren Faktoren sein, die die Arealgröße dieser Arten beeinflussen. Innerhalb derselben Gruppe von Baumarten und mit den selben von mir erhobenen Daten untersuchte ich, ob die intraspezifische Varianz derselben funktionellen Eigenschaften die Unterschiede in der Größe ihrer Areale erklären könnten. Ich konnte für keine funktionelle Eigenschaft signifikante Unterschiede bezüglich intraspezifischer Variation zwischen Arten mit kleinen oder großen geographischen Arealen finden. Meine Schlussfolerung war, das die höhere Variabilität, von der bei weit verbreiteten Arten berichtet wurde, aus sukzessive lokalen Anpassungen während der Arealgeschichte resultiert und daher eher ein Effekt als eine Ursache großer Areale darstellt. In meiner dritten und letzten Studie benutzte ich Daten zu drei funktionellen Eigenschaften einer größeren Anzahl von neotropischen Baumarten, um den Zusammenhänge von Mittelwerten und Varianzen der Eigenschaften und den Nischenbreiten der Bäume direkt miteinander zu vergleichen. Die Daten für diese Analyse wurden aus verschiedenen Datenbanken kompiliert. Die Ergebnisse zeigen, dass die Mittelwerte funktioneller Eigenschaften die realisierte Nischenbreite neotropischer Bäume beeinflussen können. In Übereinstimmung mit den Ergebnissen der ersten Studie waren Arten mit konservativer Ressourcen-Ökonomie diejeinigen, die eine geringere Nischenbreite aufweisen. Allerdings zeigten diese aus dem gesamten Areal der Arten stammenden Daten auch, dass intraspezifische Variabilität der Eigenschaften anscheinend enger mit der Nischenbreite korreliert ist, als die Eigenschaftsmittelwerte. Mein Resüme ist, dass Nischenbreite und Arealgröße neotropischer Bäume offensichtlich das Resultat einer komplexen Interaktion von Faktoren sind, in der die funktionellen Eigenschaften der Arten ein gewisse Rolle spielen, aber offensichtlich nicht allein ausschlaggebend sind. Bestimmte Ausprägungen funktioneller Eigenschaften können offensichtlich die Ausweitung der realisierten Nische und damit die Größe von Arealen beeinflussen, vermutlich weil sie höhere Wachstumsraten erlauben und damit auch die Kolonisierung neuer Standorte erleichtern .Die intra-spezifische Variabilität der Eigenschaften einer Art ist mit ihrer Nischenbreite korreliert, allerdings nur wenn diese Variabilität übertr ihr gesamtes Verbreitungsgebiet erhoben wird. Dieses Ergebnis suggeriert, dass eine hohe intra-spezifische Variabilität von funktionellen Eigenschaften eher eine Konsequenz als eine Ursache weiter Verbreitung und breiter ökologischer Nischen ist.The range size of a species is a key property of its geographical distribution. The vast variation of the species geographical range size is puzzling and partly understood, at best. The ecological niche, meaning the multidimensional space of the requirements that an individual or species has for growing and reproducing successfully, has a significant role within hypotheses to explain this variation. In general, broader niches are assumed to beget larger ranges. Niche breadth, in turn, is determined by the functional traits that species acquire throughout their evolutionary history via two mechanisms. First, particular trait values may confer species higher competitive ability or tolerance of a broader range of environmental conditions. Second, it is often assumed that species with higher intra-specific trait variation should tolerate more variable environmental conditions. I investigated two hypotheses about how functional traits can affect the range size of a group of tropical trees. First, I explored the relationship between range size and the mean values of functional traits in a group of 35 tropical trees. I therefore used data sampled in regional populations of the study species in southern Costa Rica. I found that species with high wood specific gravity and low leaf nitrogen content tend to have smaller ranges, a result which suggests that conservative resource use constrain range expansion. However, those relations were weak, and additional factors hence apparently modify the trait effect. I also explored if the regional variation in functional traits could explain the differences in range size. However, I could not find any significant differences in intra-specific trait variation between widely distributed and small range species. I conclude that higher trait variability reported from widespread species may result from successive local adaptations during range expansion and may hence often be an effect rather than the cause of more extensive ranges. Finally, I compiled data of three different traits for a larger number of trees ranging across the neotropics to directly compare the correlations between climatic niche breadth and trait means or trait variability, respctively. The results corroborated that in neotropical tree species the mean trait values can affect the realized niche breadth. As with the regional data, species with a conservative resource use strategy tend to have narrower niches. However, I also found that trait variability is apparently more closely related to realized niche breadth than trait means. My general conclusion is that species’ range size is the result of a complex and intriguing interaction of factors.In tropical tree species, the mean value of biological traits can affect the extent of the realized niche and probably how much of the potential range is filled. This effects seem mediated by trait values that allow species fast growth rates and thus probably high colonization ability. Species’ trait variability is related to the species niche breadth, but only if this variability is measured across entire species ranges. I hence tentatively conclude that high trait variability is a consequence rather than a cause of large realized niche

    Peasant participation and mobilization during economic crisis: The case of Costa Rica

    No full text

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18

    Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI) : a phase 3, placebo-controlled, randomised trial

    No full text
    Background: Patients with stable coronary artery disease and diabetes with previous percutaneous coronary intervention (PCI), particularly those with previous stenting, are at high risk of ischaemic events. These patients are generally treated with aspirin. In this trial, we aimed to investigate if these patients would benefit from treatment with aspirin plus ticagrelor. Methods: The Effect of Ticagrelor on Health Outcomes in diabEtes Mellitus patients Intervention Study (THEMIS) was a phase 3 randomised, double-blinded, placebo-controlled trial, done in 1315 sites in 42 countries. Patients were eligible if 50 years or older, with type 2 diabetes, receiving anti-hyperglycaemic drugs for at least 6 months, with stable coronary artery disease, and one of three other mutually non-exclusive criteria: a history of previous PCI or of coronary artery bypass grafting, or documentation of angiographic stenosis of 50% or more in at least one coronary artery. Eligible patients were randomly assigned (1:1) to either ticagrelor or placebo, by use of an interactive voice-response or web-response system. The THEMIS-PCI trial comprised a prespecified subgroup of patients with previous PCI. The primary efficacy outcome was a composite of cardiovascular death, myocardial infarction, or stroke (measured in the intention-to-treat population). Findings: Between Feb 17, 2014, and May 24, 2016, 11 154 patients (58% of the overall THEMIS trial) with a history of previous PCI were enrolled in the THEMIS-PCI trial. Median follow-up was 3·3 years (IQR 2·8–3·8). In the previous PCI group, fewer patients receiving ticagrelor had a primary efficacy outcome event than in the placebo group (404 [7·3%] of 5558 vs 480 [8·6%] of 5596; HR 0·85 [95% CI 0·74–0·97], p=0·013). The same effect was not observed in patients without PCI (p=0·76, p interaction=0·16). The proportion of patients with cardiovascular death was similar in both treatment groups (174 [3·1%] with ticagrelor vs 183 (3·3%) with placebo; HR 0·96 [95% CI 0·78–1·18], p=0·68), as well as all-cause death (282 [5·1%] vs 323 [5·8%]; 0·88 [0·75–1·03], p=0·11). TIMI major bleeding occurred in 111 (2·0%) of 5536 patients receiving ticagrelor and 62 (1·1%) of 5564 patients receiving placebo (HR 2·03 [95% CI 1·48–2·76], p<0·0001), and fatal bleeding in 6 (0·1%) of 5536 patients with ticagrelor and 6 (0·1%) of 5564 with placebo (1·13 [0·36–3·50], p=0·83). Intracranial haemorrhage occurred in 33 (0·6%) and 31 (0·6%) patients (1·21 [0·74–1·97], p=0·45). Ticagrelor improved net clinical benefit: 519/5558 (9·3%) versus 617/5596 (11·0%), HR=0·85, 95% CI 0·75–0·95, p=0·005, in contrast to patients without PCI where it did not, p interaction=0·012. Benefit was present irrespective of time from most recent PCI. Interpretation: In patients with diabetes, stable coronary artery disease, and previous PCI, ticagrelor added to aspirin reduced cardiovascular death, myocardial infarction, and stroke, although with increased major bleeding. In that large, easily identified population, ticagrelor provided a favourable net clinical benefit (more than in patients without history of PCI). This effect shows that long-term therapy with ticagrelor in addition to aspirin should be considered in patients with diabetes and a history of PCI who have tolerated antiplatelet therapy, have high ischaemic risk, and low bleeding risk
    corecore