8 research outputs found

    Alzheimer’s Protective Cross-Interaction between Wild-Type and A2T Variants Alters Aβ<sub>42</sub> Dimer Structure

    No full text
    Whole genome sequencing has recently revealed the protective effect of a single A2T mutation in heterozygous carriers against Alzheimer’s disease (AD) and age-related cognitive decline. The impact of the protective cross-interaction between the wild-type (WT) and A2T variants on the dimer structure is therefore of high interest, as the Aβ dimers are the smallest known neurotoxic species. Toward this goal, extensive atomistic replica exchange molecular dynamics simulations of the solvated WT homo- and A2T hetero- Aβ<sub>1–42</sub> dimers have been performed, resulting into a total of 51 μs of sampling for each system. Weakening of a set of transient, intrachain contacts formed between the central and C-terminal hydrophobic residues is observed in the heterodimeric system. The majority of the heterodimers with reduced interaction between central and C-terminal regions lack any significant secondary structure and display a weak interchain interface. Interestingly, the A2T N-terminus, particularly residue F4, is frequently engaged in tertiary and quaternary interactions with central and C-terminal hydrophobic residues in those distinct structures, leading to hydrophobic burial. This atypical involvement of the N-terminus within A2T heterodimer revealed in our simulations implies possible interference on Aβ<sub>42</sub> aggregation and toxic oligomer formation, which is consistent with experiments. In conclusion, the present study provides detailed structural insights onto A2T Aβ<sub>42</sub> heterodimer, which might provide molecular insights onto the AD protective effect of the A2T mutation in the heterozygous state

    Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus

    No full text
    The crystal structure of the region spanning residues 95-146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 angstrom. Severe diffraction anisotropy, rotational pseudo-symmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report

    A new pentameric structure of rotavirus NSP4 revealed by molecular replacement

    No full text
    The region spanning residues 95-146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 has been purified and crystallized and diffraction data have been collected to a resolution of 2.6 angstrom. Several attempts to solve the structure by the molecular-replacement method using the available tetrameric structures of this domain were unsuccessful despite a sequence identity of 73% to the already known structures. A more systematic approach with a dimer as the search model led to an unexpected pentameric structure using the program Phaser. The various steps involved in arriving at this molecular-replacement solution, which unravelled a case of subtle variation between different oligomeric states unknown at the time of solving the structure, are presented in this paper

    Novel Pentameric Structure of the Diarrhea-Inducing Region of the Rotavirus Enterotoxigenic Protein NSP4

    No full text
    A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3: NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the Delta N72 and Delta N94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of Delta N94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion-and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. Delta N72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions

    Insights into social insects from the genome of the honeybee Apis mellifera

    No full text
    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement
    corecore