9 research outputs found

    Reducing errors in guided implant surgery to optimize treatment outcomes.

    Get PDF
    Clinical considerations and treatment criteria in implant placement are constantly evolving. Prosthetically driven implant surgery has become the standard of care to improve short and long-term functional and esthetic outcomes. Therefore, implant position and angulation are planned according to the available bone, anatomical structures, and the requirements of the future prosthetic superstructure. In parallel with these developments, significant progress has been made in data imaging and different software technologies to allow the integration of data within a digital file format. Digitalization in implant surgery enables optimal planning of implant position, as well as the ability to transfer this planning to the surgical field-a process defined as "computer-supported implant planning and guided surgery." The aims of the present review are as follows: (a) to critically appraise the indications and potential "added value" of guided implant surgery, elaborating the main differences between dynamic and static guidance; and (b) to discuss the most important clinical considerations relevant for the different steps of the workflow that might influence the surgical outcome and to offer recommendations on how to avoid or reduce process errors in order to optimize treatment outcomes

    Histological evaluation following treatment of recession-type defects with coronally advanced flap and a novel human recombinant amelogenin

    Get PDF
    ObjectivesTo histologically evaluate the effects of a novel human recombinant amelogenin (rAmelX) on periodontal wound healing / regeneration in recession-type defects.Materials and methodsA total of 17 gingival recession-type defects were surgically created in the maxilla of three minipigs. The defects were randomly treated with a coronally advanced flap (CAF) and either rAmelX (test), or a CAF and placebo (control). At three months following reconstructive surgery, the animals were euthanized, and the healing outcomes histologically evaluated.ResultsThe test group yielded statistically significantly (p = 0.047) greater formation of cementum with inserting collagen fibers compared with the control group (i.e., 4.38 mm & PLUSMN; 0.36 mm vs. 3.48 mm & PLUSMN; 1.13 mm). Bone formation measured 2.15 mm & PLUSMN; 0.8 mm in the test group and 2.24 mm & PLUSMN; 1.23 mm in the control group, respectively, without a statistically significant difference (p = 0.94).ConclusionsThe present data have provided for the first-time evidence for the potential of rAmelX to promote regeneration of periodontal ligament and root cementum in recession-type defects, thus warranting further preclinical and clinical testing

    Histological evaluation following treatment of recession-type defects with coronally advanced flap and a novel human recombinant amelogenin.

    Get PDF
    OBJECTIVES To histologically evaluate the effects of a novel human recombinant amelogenin (rAmelX) on periodontal wound healing / regeneration in recession-type defects. MATERIALS AND METHODS A total of 17 gingival recession-type defects were surgically created in the maxilla of three minipigs. The defects were randomly treated with a coronally advanced flap (CAF) and either rAmelX (test), or a CAF and placebo (control). At three months following reconstructive surgery, the animals were euthanized, and the healing outcomes histologically evaluated. RESULTS The test group yielded statistically significantly (p = 0.047) greater formation of cementum with inserting collagen fibers compared with the control group (i.e., 4.38 mm ± 0.36 mm vs. 3.48 mm ± 1.13 mm). Bone formation measured 2.15 mm ± 0.8 mm in the test group and 2.24 mm ± 1.23 mm in the control group, respectively, without a statistically significant difference (p = 0.94). CONCLUSIONS The present data have provided for the first-time evidence for the potential of rAmelX to promote regeneration of periodontal ligament and root cementum in recession-type defects, thus warranting further preclinical and clinical testing. CLINICAL RELEVANCE The present results set the basis for the potential clinical application of rAmelX in reconstructive periodontal surgery

    A Novel Surgical Approach to Modify the Periodontal Phenotype for the Prevention of Mucogingival Complications Related to Orthodontic Treatment.

    No full text
    Certain bone morphologies and soft tissue thickness (ie, phenotype) are considered to be risk factors for the development of gingival recessions following orthodontic tooth movement. Preoperative evaluation of the periodontal phenotype, in the frame of orthodontic treatment plan, identify teeth at high risk for mucogingival complications related to orthodontic therapy. The new surgical technique is illustrated in a clinical case. A patient with a thin phenotype without visible gingival recession had bone dehiscences in the anterior mandible. Prior to orthodontic treatment, simultaneous bone and soft tissue augmentation was performed using the combination of a highly cross-linked ribose porcine type I collagen membrane and a subepithelial palatal connective tissue graft. Two years after augmentation surgery and initiation of orthodontic treatment, a thick buccal tissue with a wide band of attached gingiva was observed without any clinical signs of root prominences, indicating a substantial change in periodontal phenotype. The clinical findings were corroborated by the 3D analysis, demonstrating substantial bone apposition on the buccal aspect of all roots in the treated area. The described surgical technique offers a valuable approach for regenerating hard and soft tissues in deficient areas prior to orthodontic therapy, thus preventing the development of gingival recessions

    Reducing errors in guided implant surgery to optimize treatment outcomes

    No full text
    Clinical considerations and treatment criteria in implant placement are constantly evolving. Prosthetically driven implant surgery has become the standard of care to improve short and long-term functional and esthetic outcomes. Therefore, implant position and angulation are planned according to the available bone, anatomical structures, and the requirements of the future prosthetic superstructure. In parallel with these developments, significant progress has been made in data imaging and different software technologies to allow the integration of data within a digital file format. Digitalization in implant surgery enables optimal planning of implant position, as well as the ability to transfer this planning to the surgical field—a process defined as “computer-supported implant planning and guided surgery.” The aims of the present review are as follows: (a) to critically appraise the indications and potential “added value” of guided implant surgery, elaborating the main differences between dynamic and static guidance; and (b) to discuss the most important clinical considerations relevant for the different steps of the workflow that might influence the surgical outcome and to offer recommendations on how to avoid or reduce process errors in order to optimize treatment outcomes. © 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Lt

    Healing of intrabony defects using a novel human recombinant amelogenin: a preclinical study

    No full text
    OBJECTIVE: To histologically evaluate the effects of a novel human recombinant amelogenin (rAmelX) on periodontal wound healing/regeneration in intrabony defects. METHOD AND MATERIALS: Intrabony defects were surgically created in the mandible of three minipigs. Twelve defects were randomly treated with either rAmelX and carrier (test group) or with the carrier only (control group). At 3 months following reconstructive surgery, the animals were euthanized, and the tissues histologically processed. Thereafter, descriptive histology, histometry, and statistical analyses were performed. RESULTS: Postoperative clinical healing was uneventful. At the defect level, no adverse reactions (eg, suppuration, abscess formation, unusual inflammatory reaction) were observed with a good biocompatibility of the tested products. The test group yielded higher values for new cementum formation (4.81 ± 1.17 mm) compared to the control group (4.39 ± 1.71 mm) without reaching statistical significance (P = .937). Moreover, regrowth of new bone was greater in the test compared to the control group (3.51 mm and 2.97 mm, respectively, P = .309). CONCLUSIONS: The present results provided for the first-time histologic evidence for periodontal regeneration following the use of rAmelX in intrabony defects, thus pointing to the potential of this novel recombinant amelogenin as a possible alternative to regenerative materials from animal origins

    Postextraction Ridge Width Alterations Following Socket Seal Surgery—A Retrospective Study

    No full text
    Background and objectives: Preservation of alveolar ridge contour following tooth extraction is important to allow for restoration with prosthetics and implants. Socket seal surgery was introduced more than two decades ago for preservation of the form, volume and bone quality of the postextraction ridge. The aim of this retrospective study was to assess the changes in alveolar ridge contour following socket seal surgery and to evaluate the survival of the soft tissue grafts sealing the extraction site. Materials and Methods: Digital images of the extraction sites treated with the socket seal surgery were obtained immediately after extraction and after a healing time of 6 months to measure the changes in the alveolar width. In addition, the sites were photographed 1 week postsurgery to evaluate the vitality of the soft tissue grafts. Results: The overall mean loss of buccal width following socket seal surgery was 5.3% (SD = 13.4%). The mean change in width at the incisor area (1.5% ± 13.1) was significantly lesser than those in the canine area (−17.0% ± 2.1, p < 0.01) or premolar area (−10.5% ± 11.2, p < 0.01). One-week post-surgery 69% of the grafts were vital, and 31% were partially vital. Complete necrosis of the grafts did not occur. Conclusions: Our results suggest that socket seal surgery has a beneficial effect on alveolar dimensional changes 6 months following tooth extraction and that the teeth that benefit mostly from socket seal surgery are incisors
    corecore