52 research outputs found

    Discovery of 1,3-Diaminobenzenes as Selective Inhibitors of Platelet Activation at the PAR1 Receptor

    Get PDF
    A high-throughput screen of the NIH-MLSMR compound collection, along with a series of secondary assays to identify potential targets of hit compounds, previously identified a 1,3-diaminobenzene scaffold that targets protease-activated receptor 1 (PAR1). We now report additional structure–activity relationship (SAR) studies that delineate the requirements for activity at PAR1 and identify plasma-stable analogues with nanomolar inhibition of PAR1-mediated platelet activation. Compound 4 was declared as a probe (ML161) with the NIH Molecular Libraries Program. This compound inhibited platelet aggregation induced by a PAR1 peptide agonist or by thrombin but not by several other platelet agonists. Initial studies suggest that ML161 is an allosteric inhibitor of PAR1. These findings may be important for the discovery of antithrombotics with an improved safety profile

    Platelet thrombin receptor antagonism and atherothrombosis

    Get PDF
    Clinical manifestations of atherothrombotic disease, such as acute coronary syndromes, cerebrovascular events, and peripheral arterial disease, are major causes of mortality and morbidity worldwide. Platelet activation and aggregation are ultimately responsible for the progression and clinical presentations of atherothrombotic disease. The current standard of care, dual oral antiplatelet therapy with aspirin and the P2Y12 adenosine diphosphate (ADP) receptor inhibitor clopidogrel, has been shown to improve outcomes in patients with atherothrombotic disease. However, aspirin and P2Y12 inhibitors target the thromboxane A2 and the ADP P2Y12 platelet activation pathways and minimally affect other pathways, while agonists such as thrombin, considered to be the most potent platelet activator, continue to stimulate platelet activation and thrombosis. This may help explain why patients continue to experience recurrent ischaemic events despite receiving such therapy. Furthermore, aspirin and P2Y12 receptor antagonists are associated with bleeding risk, as the pathways they inhibit are critical for haemostasis. The challenge remains to develop therapies that more effectively inhibit platelet activation without increasing bleeding complications. The inhibition of the protease-activated receptor-1 (PAR-1) for thrombin has been shown to inhibit thrombin-mediated platelet activation without increasing bleeding in pre-clinical models and small-scale clinical trials. PAR-1 inhibition in fact does not interfere with thrombin-dependent fibrin generation and coagulation, which are essential for haemostasis. Thus PAR-1 antagonism coupled with existing dual oral antiplatelet therapy may potentially offer more comprehensive platelet inhibition without the liability of increased bleeding

    Improved Large-Scale Synthesis of( R

    No full text
    corecore