5 research outputs found
Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand
Rice is an important economic crop in Thailand. However, paddy rice fields are one of the largest anthropogenic sources of methane (CH4) emissions. Therefore, suitable crop management practice is necessary to reduce CH4 emissions while rice grain yield is maintained. This study aimed to evaluate appropriate options of fertilizer and water management practices for Thai rice cultivation with regards to improving rice grain yield and reducing CH4 emissions. The Denitrification–Decomposition (DNDC) model was used to simulate grain yield and the emission of CH4 under the three fertilizer options (chemical fertilizer (F), manure (M) and chemical fertilizer + manure (F + M)) with three water management options (continuous flooding (CF), mid-season drainage (MD) and alternate wet and dry (AWD)) during the years 2011–2050. Rain-fed and irrigated rice cropping systems were used. A total of 24 sites distributed in 22 provinces were studied. The data sets of daily climate, soil properties, and rice management practices were required as inputs in the model. Model validation with observation data in a field experiment indicated that simulated grain yields (R2 = 0.83, slope = 0.98, NRMES = 0.30) and cumulative seasonal CH4 emissions (R2 = 0.83, slope = 0.74, NRMES = 0.43) were significantly and positively correlated with the observation. At the end of the simulation period (2046–2050), fertilizer management options of F and F + M gave more grain yield than the M management option by 1–44% in rain-fed rice cropping and 104–190% in irrigated rice cropping system, respectively. Among options, the lower CH4 emissions were found in AWD water management options. The appropriate options with regard to maintaining grain yield and reducing CH4 emissions in the long term were suggested to be F + M with AWD for the rain-fed rice, and F with AWD for the irrigated rice cropping systems
SMART GHG Mobile Application: A New Agricultural App for Tracking GHG Emissions and Low-Carbon Rice Production in Thailand’s Local Communities
Rice fields and cultivation activities are sources of greenhouse gas (GHG) emissions. Therefore, quantification of the baseline emissions is necessary to discover and implement the appropriate mitigation options for the transition to low-carbon rice production in order to achieve the Sustainable Development Goals (SDGs) by 2030. This study aimed to track and estimate the baseline GHG emissions and the carbon footprint (C-footprint) from rice cultivation in three farmer communities in Thailand. The SMART GHG mobile application (SGA) was used to calculate the GHG emissions from many cultivation activities and calculate the C-footprint of paddy rice production. The field activity data were collected from 71 farmer households with 134 ha of harvested areas in Muang Chang (MJ) sub-district of Nan province, Suan Taeng (ST) sub-district of Suphan Buri province, and Na Kham (NK) sub-district of Nakorn Phanom province. The results from SGA showed that the total GHG emissions of MJ, ST and NK communities accounted for 7.5, 6.3 and 2.9 tCO2e ha−1, respectively. The mean of total GHG emissions from all communities accounted for 5.6 tCO2e ha−1. During the rice growing period with flooded fields, the emission of CH4 contributed to 83.4% of the total GHG emissions. Whereas, the cultivation activities of fertilization, field preparation, harvest, and residue burning shared small emissions of 5.4, 4.4, 3.8 and 2.0%, respectively. The SGA also reported the C-footprint of paddy yields by 1.77, 1.10 and 1.09 kgCO2e kg yield−1 in MJ, NK and ST, respectively. This study indicated that the SGA can effectively demonstrate and track the GHG emissions and C-footprint, which can be developed into a baseline emission and mitigation for low-carbon rice production. This is a challenge for agriculture and rural community development in Thailand
Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand
<p>Alternate wetting and drying (AWD) is a water-saving irrigation technique in a paddy field that can reduce the emission of methane, a potent greenhouse gas (GHG). It is being adopted to Asian countries, but different results are reported in literatures on methane, nitrous oxide emission, and rice productivity under AWD. Therefore, the local feasibility needs to be investigated before its adoption by farmers. The current study carried out a 3-year experiment in an acid sulfate paddy field in Prachin Buri, Thailand. During five crops (3 dry and 2 wet seasons), three treatments of water management were compared: continuous flooding (CF), flooding whenever surface water level declined to 15 cm below the soil surface (AWD), and site-specific AWD (AWDS) that weakened the criteria of soil drying (AWDS). Methane and nitrous oxide emissions were measured by a closed chamber method. Rice grain yield did not significantly (<i>p</i> < 0.05) differ among the three treatments. The amount of total water use (irrigation + rainfall) was significantly reduced by AWD (by 42%) and AWDS (by 34%) compared to CF. There was a significant effect of treatment on the seasonal total methane emission; the mean methane emission in AWD was 49% smaller than that in CF. The seasonal total nitrous oxide emission and the global warming potential (GWP) of methane and nitrous oxide did not differ among treatments. The contribution of nitrous oxide to the GWP ranged 39–62% among three treatments in dry season whereas 3–13% in wet season. The results indicate that AWD is feasible in terms of GHG emission mitigation, rice productivity, and water saving in this site, especially in dry season.</p