161 research outputs found

    Scalable solid-state quantum computation in decoherence-free subspaces with trapped ions

    Get PDF
    We propose a decoherence-free subspaces (DFS) scheme to realize scalable quantum computation with trapped ions. The spin-dependent Coulomb interaction is exploited, and the universal set of unconventional geometric quantum gates is achieved in encoded subspaces that are immune from decoherence by collective dephasing. The scalability of the scheme for the ion array system is demonstrated, either by an adiabatic way of switching on and off the interactions, or by a fast gate scheme with comprehensive DFS encoding and noise decoupling techniques.Comment: 4 pages, 1 figur

    Trapped ion chain as a neural network

    Full text link
    We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced long range interactions. Such models permit to store information distributed over the whole system. The storage capacity of such network, which depends on the phonon spectrum of the system, can be controlled by changing the external trapping potential and/or by applying longitudinal local magnetic fields. The system properties suggest the possibility of implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure

    Dynamic entanglement in oscillating molecules and potential biological implications

    Full text link
    We demonstrate that entanglement can persistently recur in an oscillating two-spin molecule that is coupled to a hot and noisy environment, in which no static entanglement can survive. The system represents a non-equilibrium quantum system which, driven through the oscillatory motion, is prevented from reaching its (separable) thermal equilibrium state. Environmental noise, together with the driven motion, plays a constructive role by periodically resetting the system, even though it will destroy entanglement as usual. As a building block, the present simple mechanism supports the perspective that entanglement can exist also in systems which are exposed to a hot environment and to high levels of de-coherence, which we expect e.g. for biological systems. Our results furthermore suggest that entanglement plays a role in the heat exchange between molecular machines and environment. Experimental simulation of our model with trapped ions is within reach of the current state-of-the-art quantum technologies.Comment: Extended version, including supplementary information. 9 pages, 8 figure

    Simultaneous cooling of axial vibrational modes in a linear ion trap

    Get PDF
    In order to use a collection of trapped ions for experiments where a well-defined preparation of vibrational states is necessary, all vibrational modes have to be cooled to ensure precise and repeatable manipulation of the ions quantum states. A method for simultaneous sideband cooling of all axial vibrational modes is proposed. By application of a magnetic field gradient the absorption spectrum of each ion is modified such that sideband resonances of different vibrational modes coincide. The ion string is then irradiated with monochromatic electromagnetic radiation, in the optical or microwave regime, for sideband excitation. This cooling scheme is investigated in detailed numerical studies. Its application for initializing ion strings for quantum information processing is extensively discussed
    • …
    corecore