21,767 research outputs found
Enhanced binding revisited for a spinless particle in non-relativistic QED
We consider a spinless particle coupled to a quantized Bose field and show
that such a system has a ground state for two classes of short-range potentials
which are alone too weak to have a zero-energy resonance
Quantification of the uncertainties within the radiotherapy dosimetry chain and their impact on tumour control
BACKGROUND AND PURPOSE:
Dose delivered during radiotherapy has uncertainty arising from a number of sources including machine calibration, treatment planning and delivery and can impact outcomes. Any systematic uncertainties will impact all patients and can continue for extended periods. The impact on tumour control probability (TCP) of the uncertainties within the radiotherapy calibration process has been assessed.
MATERIAL AND METHODS:
The linear-quadratic model was used to simulate the TCP from two prostate cancer and a head and neck (H&N) clinical trial. The uncertainty was separated into four components; 1) initial calibration, 2) systematic shift due to output drift, 3) drift during treatment and 4) daily fluctuations. Simulations were performed for each clinical case to model the variation in TCP present at the end of treatment arising from the different components.
RESULTS:
Overall uncertainty in delivered dose was +/−2.1% (95% confidence interval (CI)), consisting of uncertainty standard deviations of 0.7% in initial calibration, 0.8% due to subsequent calibration shift due to output drift, 0.1% due to drift during treatment, and 0.2% from daily variations. The overall uncertainty of TCP (95% CI) for a population of patients treated on different machines was +/−3%, +/−5%, and +/−3% for simulations based on the two prostate trials and H&N trial respectively.
CONCLUSIONS:
The greatest variation in delivered target volume dose arose from calibration shift due to output drift. Careful monitoring of beam output following initial calibration remains vital and may have a significant impact on clinical outcomes
Absorbate-Induced Piezochromism in a Porous Molecular Crystal
Atmospherically stable porous frameworks
and materials are interesting
for heterogeneous solid–gas applications. One motivation is
the direct and selective uptake of pollutant/hazardous gases, where
the material produces a measurable response in the presence of the
analyte. In this report, we present a combined experimental and theoretical
rationalization for the piezochromic response of a robust and porous
molecular crystal built from an extensively fluorinated trispyrazole.
The electronic response of the material is directly determined by
analyte uptake, which provokes a subtle lattice contraction and an
observable bathochromic shift in the optical absorption onset. Selectivity
for fluorinated absorbates is demonstrated, and toluene is also found
to crystallize within the pore. Furthermore, we demonstrate the application
of electronic structure calculations to predict a physicochemical
response, providing the foundations for the design of electronically
tunable porous solids with the chemical properties required for development
of novel gas-uptake media
New and simple algorithms for stable flow problems
Stable flows generalize the well-known concept of stable matchings to markets
in which transactions may involve several agents, forwarding flow from one to
another. An instance of the problem consists of a capacitated directed network,
in which vertices express their preferences over their incident edges. A
network flow is stable if there is no group of vertices that all could benefit
from rerouting the flow along a walk.
Fleiner established that a stable flow always exists by reducing it to the
stable allocation problem. We present an augmenting-path algorithm for
computing a stable flow, the first algorithm that achieves polynomial running
time for this problem without using stable allocation as a black-box
subroutine. We further consider the problem of finding a stable flow such that
the flow value on every edge is within a given interval. For this problem, we
present an elegant graph transformation and based on this, we devise a simple
and fast algorithm, which also can be used to find a solution to the stable
marriage problem with forced and forbidden edges.
Finally, we study the stable multicommodity flow model introduced by
Kir\'{a}ly and Pap. The original model is highly involved and allows for
commodity-dependent preference lists at the vertices and commodity-specific
edge capacities. We present several graph-based reductions that show
equivalence to a significantly simpler model. We further show that it is
NP-complete to decide whether an integral solution exists
Muon-spin-relaxation study of the magnetic penetration depth in MgB2
The magnetic vortex lattice (VL) of polycrystalline MgB2 has been
investigated by transverse-field muon-spin-relaxation (TF-MuSR). The evolution
of TF-MuSR depolarization rate, sigma, that is proportional to the second
moment of the field distribution of the VL has been studied as a function of
temperature and applied magnetic field. The low temperature value s exhibits a
pronounced peak near Hext = 75 mT. This behavior is characteristic of strong
pinning induced distortions of the VL which put into question the
interpretation of the low-field TF-MuSR data in terms of the magnetic
penetration depth lambda(T). An approximately constant value of sigma, such as
expected for an ideal VL in the London-limit, is observed at higher fields of
Hext > 0.4 T. The TF-MuSR data at Hext = 0.6 T are analyzed in terms of a
two-gap model. We obtain values for the gap size of D1 = 6.0 meV (2D1/kBTc =
3.6), D2 = 2.6 meV (2D2/kBTc = 1.6), a comparable spectral weight of the two
bands and a zero temperature value for the magnetic penetration depth of lambda
= 100 nm. In addition, we performed MuSR-measurements in zero external field
(ZF-MuSR). We obtain evidence that the muon site (at low temperature) is
located on a ring surrounding the center of the boron hexagon. Muon diffusion
sets in already at rather low temperature of T > 10 K. The nuclear magnetic
moments can account for the observed relaxation rate and no evidence for
electronic magnetic moments has been obtained.Comment: 15 pages, 4 figure
Triton calculations with and exchange three-nucleon forces
The Faddeev equations are solved in momentum space for the trinucleon bound
state with the new Tucson-Melbourne and exchange three-nucleon
potentials. The three-nucleon potentials are combined with a variety of
realistic two-nucleon potentials. The dependence of the triton binding energy
on the cut-off parameter in the three-nucleon potentials is studied
and found to be reduced compared to the case with pure exchange. The
exchange parts of the three-nucleon potential yield an overall repulsive
effect. When the recommended parameters are employed, the calculated triton
binding energy turns out to be very close to its experimental value.
Expectation values of various components of the three-nucleon potential are
given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys.
Rev.
Sliding charge density wave in manganites
The so-called stripe phase of the manganites is an important example of the
complex behaviour of metal oxides, and has long been interpreted as the
localisation of charge at atomic sites. Here, we demonstrate via resistance
measurements on La_{0.50}Ca_{0.50}MnO_3 that this state is in fact a
prototypical charge density wave (CDW) which undergoes collective transport.
Dramatic resistance hysteresis effects and broadband noise properties are
observed, both of which are typical of sliding CDW systems. Moreover, the high
levels of disorder typical of manganites result in behaviour similar to that of
well-known disordered CDW materials. Our discovery that the manganite
superstructure is a CDW shows that unusual transport and structural properties
do not require exotic physics, but can emerge when a well-understood phase (the
CDW) coexists with disorder.Comment: 13 pages; 4 figure
Evaluation of the health-related quality of life of children in Schistosoma haematobium-endemic communities in Kenya: a cross-sectional study.
BACKGROUND: Schistosomiasis remains a global public health challenge, with 93% of the ~237 million infections occurring in sub-Saharan Africa. Though rarely fatal, its recurring nature makes it a lifetime disorder with significant chronic health burdens. Much of its negative health impact is due to non-specific conditions such as anemia, undernutrition, pain, exercise intolerance, poor school performance, and decreased work capacity. This makes it difficult to estimate the disease burden specific to schistosomiasis using the standard DALY metric.
METHODOLOGY/PRINCIPAL FINDINGS: In our study, we used Pediatric Quality of Life Inventory (PedsQL), a modular instrument available for ages 2-18 years, to assess health-related quality of life (HrQoL) among children living in a Schistosoma haematobium-endemic area in coastal Kenya. The PedsQL questionnaires were administered by interview to children aged 5-18 years (and their parents) in five villages spread across three districts. HrQoL (total score) was significantly lower in villages with high prevalence of S. haematobium (-4.0%, p<0.001) and among the lower socioeconomic quartiles (-2.0%, p<0.05). A greater effect was seen in the psychosocial scales as compared to the physical function scale. In moderate prevalence villages, detection of any parasite eggs in the urine was associated with a significant 2.1% (p<0.05) reduction in total score. The PedsQL reliabilities were generally high (Cronbach alphas ≥0.70), floor effects were acceptable, and identification of children from low socioeconomic standing was valid.
CONCLUSIONS/SIGNIFICANCE: We conclude that exposure to urogenital schistosomiasis is associated with a 2-4% reduction in HrQoL. Further research is warranted to determine the reproducibility and responsiveness properties of QoL testing in relation to schistosomiasis. We anticipate that a case definition based on more sensitive parasitological diagnosis among younger children will better define the immediate and long-term HrQoL impact of Schistosoma infection
Macroscopic phase segregation in superconducting K0.73Fe1.67Se2 as seen by muon spin rotation and infrared spectroscopy
Using muon spin rotation (\muSR) and infrared spectroscopy we investigated
the recently discovered superconductor K0.73Fe1.67Se2 with Tc = 32 K. We show
that the combined data can be consistently described in terms of a
macroscopically phase segregated state with a matrix of ~88% volume fraction
that is insulating and strongly magnetic and inclusions with a ~12% volume
fraction which are metallic, superconducting and non-magnetic. The electronic
properties of the latter, in terms of the normal state plasma frequency and the
superconducting condensate density, appear to be similar as in other iron
selenide or arsenide superconductors.Comment: 22 pages, 8 figures. (citation list correction.
The electronic specific heat in the pairing pseudogap regime
When pairing correlations in a quasi two dimensional electron system induce a
pseudogap in the single particle density of states, the specific heat must also
contain a sizeable pair contribution. The theoretically calculated specific
heat for such a system is compared to the experimental results of Loram and his
collaborators for underdoped YBa_2Cu_3O_{6+x} and La_{2-x}Sr_{x}CuO_4 samples.
The size and doping dependence of the extracted pseudogap energy scale for both
materials is comparable to the values obtained from a variety of other
experiments.Comment: 4 pages, 5 eps figure
- …