151 research outputs found
Visum repertum über den Leichnam des seligen Herrn Hofraths Senckenberg des Stifters des Bürgerhospitals
Handschriftlicher Leichenschaubericht über den verunglückten Johann Christian Senckenberg: 18.11.1772. Unterzeichnet von den Ärzten: Behrends, I. A. ; Krisner, I.C. ; Müller, F. S. ; Giese, J. G. ; Behrends, J. C. ; Jonas, A. I. G. ; Meyer, C. F. ; Bucher, J. L. ; Grasemann, Ch. F
A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B
Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing
The Association of AMPK with ULK1 Regulates Autophagy
Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex
Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF
If the Technicolor omega_T particle exists, a likely decay mode is omega_T ->
gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We
have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab
Tevatron for events with a photon and two jets, where one of the jets must
contain a secondary vertex implying the presence of a b quark. We find no
excess of events above standard model expectations. We express the result of an
exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs):
http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps
FERMILAB-PUB-98/321-
Glycolate Oxidase Isozymes Are Coordinately Controlled by GLO1 and GLO4 in Rice
Glycolate oxidase (GLO) is a key enzyme in photorespiratory metabolism. Four putative GLO genes were identified in the rice genome, but how each gene member contributes to GLO activities, particularly to its isozyme profile, is not well understood. In this study, we analyzed how each gene plays a role in isozyme formation and enzymatic activities in both yeast cells and rice tissues. Five GLO isozymes were detected in rice leaves. GLO1 and GLO4 are predominately expressed in rice leaves, while GLO3 and GLO5 are mainly expressed in the root. Enzymatic assays showed that all yeast-expressed GLO members except GLO5 have enzymatic activities. Further analyses suggested that GLO1, GLO3 and GLO4 interacted with each other, but no interactions were observed for GLO5. GLO1/GLO4 co-expressed in yeast exhibited the same isozyme pattern as that from rice leaves. When either GLO1 or GLO4 was silenced, expressions of both genes were simultaneously suppressed and most of the GLO activities were lost, and consistent with this observation, little GLO isozyme protein was detected in the silenced plants. In contrast, no observable effect was detected when GLO3 was suppressed. Comparative analyses between the GLO isoforms expressed in yeast and the isozymes from rice leaves indicated that two of the five isozymes are homo-oligomers composed of either GLO1 or GLO4, and the other three are hetero-oligomers composed of both GLO1 and GLO4. Our current data suggest that GLO isozymes are coordinately controlled by GLO1 and GLO4 in rice, and the existence of GLO isozymes and GLO molecular and compositional complexities implicate potential novel roles for GLO in plants
eta-prime Meson Production in Nucleon-Nucleon Collisions Near The Threshold
The production of mesons in the reactions and at threshold-near energies is analyzed within a covariant effective
meson-nucleon theory. The description of cross section and angular
distributions of the available data in this kinematical region in the
channel is accomplished by including meson currents and nucleon currents with
the resonances , and . Predictions
for the channel are given. The di-electron production from subsequent
Dalitz decay is also
calculated and numerical results are presented for intermediate energy and
kinematics of possible experiments with HADES, CLAS and KEK-PS
Caspase involvement in autophagy
Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagyrelated proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples drawn from Drosophila and plant models regarding the contribution of autophagy to apoptotic cell death during normal development
Key role for ubiquitin protein modification in TGFβ signal transduction
The transforming growth factor β (TGFβ) superfamily of signal transduction molecules plays crucial roles in the regulation of cell behavior. TGFβ regulates gene transcription through Smad proteins and signals via non-Smad pathways. The TGFβ pathway is strictly regulated, and perturbations lead to tumorigenesis. Several pathway components are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. Smurfs are well known negative regulators of TGFβ, which function as E3 ligases recruited by adaptors such as I-Smads. TGFβ signaling can also be enhanced by E3 ligases, such as Arkadia, that target repressors for degradation. It is becoming clear that E3 ligases often target multiple pathways, thereby acting as mediators of signaling cross-talk. Regulation via ubiquitination involves a complex network of E3 ligases, adaptor proteins, and deubiquitinating enzymes (DUBs), the last-mentioned acting by removing ubiquitin from its targets. Interestingly, also non-degradative ubiquitin modifications are known to play important roles in TGFβ signaling. Ubiquitin modifications thus play a key role in TGFβ signal transduction, and in this review we provide an overview of known players, focusing on recent advances
Search for second generation leptoquarks in the dimuon plus dijet channel of p-pbar collisions at sqrt{s}=1.8 TeV
We report on a search for second generation leptoquarks (Phi_2) using a data
sample corresponding to an integrated luminosity of 110 pb^{-1} collected at
the Collider Detector at Fermilab. We present upper limits on the production
cross section as a function of Phi_2 mass, assuming that the leptoquarks are
produced in pairs and decay into a muon and a quark with branching ratio beta.
Using a Next-to-Leading order QCD calculation, we extract a lower mass limit of
M_{\Phi_2} > 202 (160) GeV$/c^{2} at 95% confidence level for scalar
leptoquarks with beta=1(0.5).Comment: 11 pages, 2 figure
Search for New Particles Decaying to b bbar in p pbar Collisions at sqrt{s}=1.8 TeV
We have used 87 pb^-1 of data collected with the Collider Detector at
Fermilab to search for new particles decaying to b bbar. We present
model-independent upper limits on the cross section for narrow resonances which
excludes the color-octet technirho in the mass interval 350 < M < 440 GeV/c^2.
In addition, we exclude topgluons, predicted in models of topcolor-assisted
technicolor, of width Gamma = 0.3 M in the mass range 280 < M < 670 GeV/c^2, of
width Gamma = 0.5 M in the mass range 340 < M < 640 GeV/c^2, and of width Gamma
= 0.7 M in the mass range 375 < M < 560 GeV/c^2.Comment: 17 pages in a LaTex generated postscript file, with one table and
four figures. Resubmitted to Physical Review Letters. Minor clarifications
were added to the text. The displayed normalization of the resonance models
in Figure 2 was modified to correspond to our 95% CL upper limit on the cross
section (instead of arbitrary normalization which was used previously). All
results are identical to those in the previous submissio
- …