105 research outputs found

    Risk factors for methamphetamine use in youth: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methamphetamine (MA) is a potent stimulant that is readily available. Its effects are similar to cocaine, but the drug has a profile associated with increased acute and chronic toxicities. The objective of this systematic review was to identify and synthesize literature on risk factors that are associated with MA use among youth.</p> <p>More than 40 electronic databases, websites, and key journals/meeting abstracts were searched. We included studies that compared children and adolescents (≤ 18 years) who used MA to those who did not. One reviewer extracted the data and a second checked for completeness and accuracy. For discrete risk factors, odds ratios (OR) were calculated and when appropriate, a pooled OR with 95% confidence intervals (95% CI) was calculated. For continuous risk factors, mean difference and 95% CI were calculated and when appropriate, a weighted mean difference (WMD) and 95% CI was calculated. Results were presented separately by comparison group: low-risk (no previous drug abuse) and high-risk children (reported previous drug abuse or were recruited from a juvenile detention center).</p> <p>Results</p> <p>Twelve studies were included. Among low-risk youth, factors associated with MA use were: history of heroin/opiate use (OR = 29.3; 95% CI: 9.8–87.8), family history of drug use (OR = 4.7; 95% CI: 2.8–7.9), risky sexual behavior (OR = 2.79; 95% CI: 2.25, 3.46) and some psychiatric disorders. History of alcohol use and smoking were also significantly associated with MA use. Among high-risk youth, factors associated with MA use were: family history of crime (OR = 2.0; 95% CI: 1.2–3.3), family history of drug use (OR = 4.7; 95% CI: 2.8–7.9), family history of alcohol abuse (OR = 3.2; 95% CI: 1.8–5.6), and psychiatric treatment (OR = 6.8; 95% CI: 3.6–12.9). Female sex was also significantly associated with MA use.</p> <p>Conclusion</p> <p>Among low-risk youth, a history of engaging in a variety of risky behaviors was significantly associated with MA use. A history of a psychiatric disorder was a risk factor for MA for both low- and high-risk youth. Family environment was also associated with MA use. Many of the included studies were cross-sectional making it difficult to assess causation. Future research should utilize prospective study designs so that temporal relationships between risk factors and MA use can be established.</p

    Safety and Immunogenicity of a Recombinant Plasmodium falciparum AMA1 Malaria Vaccine Adjuvanted with Alhydrogel™, Montanide ISA 720 or AS02

    Get PDF
    Contains fulltext : 71100.pdf (publisher's version ) (Open Access)BACKGROUND: Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1) is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 microg and 50 microg doses with three different adjuvants, Alhydrogel, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8-10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80-100%). Induration occurred in the Montanide 50 microg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1-2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm) were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNgamma and IL-5 cytokines. CONCLUSIONS/SIGNIFICANCE: All formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies. TRIAL REGISTRATION: (Clinicaltrials.gov) NCT00730782

    Naturally Occurring Variants of Human Α9 Nicotinic Receptor Differentially Affect Bronchial Cell Proliferation and Transformation

    Get PDF
    Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer

    Chemically-Induced Cancers Do Not Originate from Bone Marrow-Derived Cells

    Get PDF
    BACKGROUND: The identification and characterization of cancer stem cells (CSCs) is imperative to understanding the mechanism of cancer pathogenesis. Growing evidence suggests that CSCs play critical roles in the development and progression of cancer. However, controversy exists as to whether CSCs arise from bone marrow-derived cells (BMDCs). METHODOLOGY AND PRINCIPAL FINDINGS: In the present study, n-nitrosodiethylamine (DEN) was used to induce tumor formation in female mice that received bone marrow from male mice. Tumor formation was induced in 20/26 mice, including 12 liver tumors, 6 lung tumors, 1 bladder tumor and 1 nasopharyngeal tumor. Through comparison of fluorescence in situ hybridization (FISH) results in corresponding areas from serial tumor sections stained with HandE, we determined that BMDCs were recruited to both tumor tissue and normal surrounding tissue at a very low frequency (0.2-1% in tumors and 0-0.3% in normal tissues). However, approximately 3-70% of cells in the tissues surrounding the tumor were BMDCs, and the percentage of BMDCs was highly associated with the inflammatory status of the tissue. In the present study, no evidence was found to support the existence of fusion cells formed form BMDCs and tissue-specific stem cells. CONCLUSIONS: In summary, our data suggest that although BMDCs may contribute to tumor progression, they are unlike to contribute to tumor initiation.published_or_final_versio

    Combining Fungal Biopesticides and Insecticide-Treated Bednets to Enhance Malaria Control

    Get PDF
    In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management

    Safety and Immunogenicity of a Malaria Vaccine, Plasmodium falciparum AMA-1/MSP-1 Chimeric Protein Formulated in Montanide ISA 720 in Healthy Adults

    Get PDF
    The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 µg respectively, and 1 placebo group of 12 participants receiving the adjuvant only.The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1∶10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.

    Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).

    Get PDF
    BACKGROUND: Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. RESULTS: Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (H exp , one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased H exp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. CONCLUSIONS: The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae

    Genetic Variants of Human Granzyme B Predict Transplant Outcomes after HLA Matched Unrelated Bone Marrow Transplantation for Myeloid Malignancies

    Get PDF
    Serine protease granzyme B plays important roles in infections, autoimmunity, transplant rejection, and antitumor immunity. A triple-mutated granzyme B variant that encodes three amino substitutions (Q48R, P88A, and Y245H) has been reported to have altered biological functions. In the polymorphism rs8192917 (2364A>G), the A and G alleles represent wild type QPY and RAH mutant variants, respectively. In this study, we analyzed the impact of granzyme B polymorphisms on transplant outcomes in recipients undergoing unrelated HLA-fully matched T-cell-replete bone marrow transplantation (BMT) through the Japan Donor Marrow Program. The granzyme B genotypes were retrospectively analyzed in a cohort of 613 pairs of recipients with hematological malignancies and their unrelated donors. In patients with myeloid malignancies consisting of acute myeloid leukemia and myelodysplastic syndrome, the donor G/G or A/G genotype was associated with improved overall survival (OS; adjusted hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.41–0.89; P = 0.01) as well as transplant related mortality (TRM; adjusted HR, 0.48; 95% CI, 0.27–0.86, P = 0.01). The recipient G/G or A/G genotype was associated with a better OS (adjusted HR, 0.68; 95% CI, 0.47–0.99; P = 0.05) and a trend toward a reduced TRM (adjusted HR, 0.61; 95% CI, 0.35–1.06; P = 0.08). Granzyme B polymorphism did not have any effect on the transplant outcomes in patients with lymphoid malignancies consisting of acute lymphoid leukemia and malignant lymphoma. These data suggest that there is an association between the granzyme B genotype and better clinical outcomes in patients with myeloid malignancies after unrelated BMT
    corecore