90 research outputs found

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Biofluid Biomarkers in Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability

    Z-α₁-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state

    No full text
    Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α1-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α1-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α1-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α1-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α1-antitrypsin–induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets
    corecore