2 research outputs found

    A novel blood proteomic signature for prostate cancer

    Get PDF
    International audienceSimple Summary Despite intensive research, effective tools for detection and monitoring of prostate cancer remain to be found. Prostate-specific antigen (PSA), commonly used in prostate cancer assessments, can lead to overdiagnosis and overtreatment of indolent disease. This highlights the need for supporting non-invasive diagnostic, prognostic, and disease stratification biomarkers that could complement PSA in clinical decision-taking via increased sensitivity and specificity. In order to address this need, we uncover novel prostate cancer protein signatures by leveraging a cutting-edge analytical technique to measure proteins in patient samples. This strategy was used as a discovery tool to identify changes in protein levels in the serum of newly diagnosed patients as compared with healthy controls; the feature set was then further validated by reference to a second cohort of patients, achieving a high discriminatory ability. The proteomic maps generated also identified relevant changes in biological functions, notably the complement cascade. Prostate cancer is the most common malignant tumour in men. Improved testing for diagnosis, risk prediction, and response to treatment would improve care. Here, we identified a proteomic signature of prostate cancer in peripheral blood using data-independent acquisition mass spectrometry combined with machine learning. A highly predictive signature was derived, which was associated with relevant pathways, including the coagulation, complement, and clotting cascades, as well as plasma lipoprotein particle remodeling. We further validated the identified biomarkers against a second cohort, identifying a panel of five key markers (GP5, SERPINA5, ECM1, IGHG1, and THBS1) which retained most of the diagnostic power of the overall dataset, achieving an AUC of 0.91. Taken together, this study provides a proteomic signature complementary to PSA for the diagnosis of patients with localised prostate cancer, with the further potential for assessing risk of future development of prostate cancer. Data are available via ProteomeXchange with identifier PXD025484

    BH3-mimetics:recent developments in cancer therapy

    No full text
    Abstract The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature
    corecore