117 research outputs found
Perspectives on next steps in classification of oro-facial pain - Part 3: biomarkers of chronic oro-facial pain - from research to clinic
The purpose of this study was to review the current status of biomarkers used in oro-facial pain conditions. Specifically, we critically appraise their relative strengths and weaknesses for assessing mechanisms associated with the oro-facial pain conditions and interpret that information in the light of their current value for use in diagnosis. In the third section, we explore biomarkers through the perspective of ontological realism. We discuss ontological problems of biomarkers as currently widely conceptualised and implemented. This leads to recommendations for research practice aimed to a better understanding of the potential contribution that biomarkers might make to oro-facial pain diagnosis and thereby fulfil our goal for an expanded multidimensional framework for oro-facial pain conditions that would include a third axis
Perspectives on next steps in classification of oro-facial pain - part 1: role of ontology
The purpose of this study was to review existing principles of oro-facial pain classifications and to specify design recommendations for a new system that would reflect recent insights in biomedical classification systems, terminologies and ontologies. The study was initiated by a symposium organised by the International RDC/TMD Consortium Network in March 2013, to which the present authors contributed. The following areas are addressed: problems with current classification approaches, status of the ontological basis of pain disorders, insufficient diagnostic aids and biomarkers for pain disorders, exploratory nature of current pain terminology and classification systems, and problems with prevailing classification methods from an ontological perspective. Four recommendations for addressing these problems are as follows: (i) develop a hypothesis-driven classification structure built on principles that ensure to our best understanding an accurate description of the relations among all entities involved in oro-facial pain disorders; (ii) take into account the physiology and phenomenology of oro-facial pain disorders to adequately represent both domains including psychosocial entities in a classification system; (iii) plan at the beginning for field-testing at strategic development stages; and (iv) consider how the classification system will be implemented. Implications in relation to the specific domains of psychosocial factors and biomarkers for inclusion into an oro-facial pain classification system are described in two separate papers
Perspectives on next steps in classification of oro-facial pain - part 2: role of psychosocial factors
This study was initiated by a symposium, in which the present authors contributed, organised by the International RDC/TMD Consortium Network in March 2013. The purpose of the study was to review the status of biobehavioural research - both quantitative and qualitative - related to oro-facial pain (OFP) with respect to the aetiology, pathophysiology, diagnosis and management of OFP conditions, and how this information can optimally be used for developing a structured OFP classification system for research. In particular, we address representation of psychosocial entities in classification systems, use of qualitative research to identify and understand the full scope of psychosocial entities and their interaction, and the usage of classification system for guiding treatment. We then provide recommendations for addressing these problems, including how ontological principles can inform this process
Ontologies, Mental Disorders and Prototypes
As it emerged from philosophical analyses and cognitive research, most concepts exhibit typicality effects, and resist to the efforts of defining them in terms of necessary and sufficient conditions. This holds also in the case of many medical concepts. This is a problem for the design of computer science ontologies, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. However, the need of representing concepts in terms of typical traits concerns almost every domain of real world knowledge, including medical domains. In particular, in this article we take into account the domain of mental disorders, starting from the DSM-5 descriptions of some specific mental disorders. On this respect, we favor a hybrid approach to the representation of psychiatric concepts, in which ontology oriented formalisms are combined to a geometric representation of knowledge based on conceptual spaces
Infectious Disease Ontology
Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain
EXACT2: the semantics of biomedical protocols
© 2014 Soldatova et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. Methods: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously ‘unseen’ (not used for the construction of EXACT2) protocols. Results: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. Conclusions: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.This work has been partially funded by the Brunel University BRIEF award and a grant from Occams Resources
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
Towards industrial strength philosophy: how analytical ontology can help medical informatics
Opposite macrophage polarization in different subsets of ovarian cancer: observation from a pilot study
The role of the innate immune system in ovarian cancer is gaining importance. The relevance of tumor-associated macrophages (TAM) is insufficiently understood. In this pilot project, comprising the immunofluorescent staining of 30 biopsies taken from 24 patients with ovarian cancer, we evaluated the presence of total TAM (cluster of differentiation (CD) 68 expression), M1 (major histocompatibility complex (MHC) II expression), and M2 (anti-mannose receptor C type 1 (MRC1) expression), and the blood vessel diameter. We observed a high M1/M2 ratio in low-grade ovarian cancer compared to high-grade tumors, more total TAM and M2 in metastatic biopsies, and a further increase in total TAM and M2 at interval debulking, without beneficial effects of bevacizumab. The blood vessel diameter was indicative for M2 tumor infiltration (Spearman correlation coefficient of 0.65). These data mainly reveal an immune beneficial environment in low-grade ovarian cancer in contrast to high-grade serous ovarian cancer, where immune suppression is not altered by neoadjuvant therapy
Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica
Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.Portuguese funds from FCT - Foundation for Science and Technology [UID/Multi/04326/2013]; SZN PhD fellowship via the Open University; ESF COST Action Seagrass Productivity: From Genes to Ecosystem Management [ES0906]info:eu-repo/semantics/publishedVersio
- …
