35 research outputs found

    Remote Sensing of Diatom Bloom Succession

    Get PDF
    Marine diatoms are major biogeochemical and ecological influencers that contribute to a large fraction of the carbon export and supplying fisheries (Falkowski 2015). The fluxes of carbon transfer to the food web or to the deep ocean vary according to the stage of a diatom bloom (Du Toit 2018). Stages can be determined using inherent optical properties that reflect their physiological state, such as the chlorophyll fluorescence to particulate backscattering ratio (ChlF/b(sub bp), Cetinic et al. 2015). Identifying the bloom stage can potentially improve biogeochemical models of carbon export and fishery management. However, it is not yet possible to adequately determine the stage of phytoplankton blooms using satellites. Satellite-derived remote sensing reflectance R(sub rs)() allow for remote identification of diatom blooms in the open ocean (Sathyendranath et al. 2004), and there are techniques to estimate the fluorescence quantum yield () that, when high, can indicate the nutrient limitation that often takes place when blooms start to senesce (Behrenfeld et al. 2009). The goal of this study is to use the ratio between the normalized fluorescence line height from R(sub rs)() (nFLH) and the particulate backscattering (b(sub bp)(443)) provided by satellites to identify exponentially growing and senescent diatom blooms from space

    Role of NASA's SeaBASS Repository for the Legacy of the EXPORTS Field Biogeochemical Measurements

    Get PDF
    Role of NASA's SeaBASS repository for the legacy of the EXPORTS field biogeochemical measurements

    PACE Technical Report Series, Volume 3: Polarimetry in the PACE Mission: Science Team Consensus Document

    Get PDF
    The first goal of PACE mission science is to open new vistas in aquatic bio geochemistry by measuring non-chlorophyll pigments, separate chlorophyll and colored dissolved organic matter (CDOM) and characterize phytoplankton taxonomy. PACE science will follow aquatic biochemistry into ecosystems in coastal regions, estuaries, tidal wetlands and lakes. PACE's second science goal is to extend aerosoland cloud data-records begun by the passive EOS-era instruments, as an aerosol- cloud-climate continuation mission. Besides PACE, NASA has no plans for multi-angle radiometry to continue the MISR record nor for multi-angle polarimetry to continue the PARASOL record. A multi-angle polarimeter on PACE will reduce risk towards meeting the first goal and enable the realization of the second

    An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment

    Get PDF
    The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set

    The Adsorption of Dissolved Organic Carbon onto Glass Fiber Filters and Its Effect on the Measurement of Particulate Organic Carbon: A Laboratory and Modeling Exercise

    Get PDF
    Particulate organic carbon (POC) represents a small portion of total carbon in the ocean. However, it plays a large role in the turnover of organic matter through the biological pump and other processes. Early on since the development of the POC measurement technique in the 1960s, it was known that dissolved organic carbon (DOC) adsorbs and is retained both on and in the filter. That retained DOC is measured as if it was part of the particulate fraction, an artifact that can cause significant overestimates of POC concentration. We set out to address the long-standing question of whether the magnitude of the DOC adsorption is affected by the quantity and quality of the dissolved organic matter in the sample. However, our results precluded an unequivocal answer to that question; nevertheless, the experimental data generated did allow us to develop and test predictive models that relate the mass of carbon adsorbed to the volume of sample filtered. The results indicate that the uptake of DOC can be predicted using an exponential model and that a saturation point is approached when approximately a half-liter of water is filtered. This model can be a valuable tool for correcting existing POC data sets that did not account for DOC adsorption. Nonetheless, this approach should not be regarded as a substitute for collecting in situ filter blanks in parallel with POC samples to properly correct for this artifact

    Pre-Aerosol, Clouds, and Ocean Ecosystem (PACE) Mission Science Definition Team Report

    Get PDF
    We live in an era in which increasing climate variability is having measurable impact on marine ecosystems within our own lifespans. At the same time, an ever-growing human population requires increased access to and use of marine resources. To understand and be better prepared to respond to these challenges, we must expand our capabilities to investigate and monitor ecological and bio geo chemical processes in the oceans. In response to this imperative, the National Aeronautics and Space Administration (NASA) conceived the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission to provide new information for understanding the living ocean and for improving forecasts of Earth System variability. The PACE mission will achieve these objectives by making global ocean color measurements that are essential for understanding the carbon cycle and its inter-relationship with climate change, and by expanding our understanding about ocean ecology and biogeochemistry. PACE measurements will also extend ocean climate data records collected since the 1990s to document changes in the function of aquatic ecosystems as they respond to human activities and natural processes over short and long periods of time. These measurements are pivotal for differentiating natural variability from anthropogenic climate change effects and for understanding the interactions between these processes and various human uses of the ocean. PACE ocean science goals and measurement capabilities greatly exceed those of our heritage ocean color sensors, and are needed to address the many outstanding science questions developed by the oceanographic community over the past 40 years

    Assessment of holographic microscopy for quantifying marine particle size and concentration

    Get PDF
    Holographic microscopy has emerged as a tool for in situ imaging of microscopic organisms and other particles in the marine environment: appealing because of the relatively larger sampling volume and simpler optical configuration compared to other imaging systems. However, its quantitative capabilities have so far remained uncertain, in part because hologram reconstruction and image recognition have required manual operation. Here, we assess the quantitative skill of our automated hologram processing pipeline (CCV Pipeline), to evaluate the size and concentration measurements of environmental and cultured assemblages of marine plankton particles, and microspheres. Over 1 million particles, ranging from 10 to 200 μm in equivalent spherical diameter, imaged by the 4‐Deep HoloSea digital inline holographic microscope (DIHM) are analyzed. These measurements were collected in parallel with a FlowCam (FC), Imaging FlowCytobot (IFCB), and manual microscope identification. Once corrections for particle location and nonuniform illumination were developed and applied, the DIHM showed an underestimate in ESD of about 3% to 10%, but successfully reproduced the size spectral slope from environmental samples, and the size distribution of cultures (Dunaliella tertiolecta, Heterosigma akashiwo, and Prorocentrum micans) and microspheres. DIHM concentrations (order 1 to 1000 particles ml−1) showed a linear agreement (r2 = 0.73) with the other instruments, but individual comparisons at times had large uncertainty. Overall, we found the DIHM and the CCV Pipeline required extensive manual correction, but once corrected, provided concentration and size estimates comparable to the other imaging systems assessed in this study. Holographic cameras are mechanically simple, autonomous, can operate at very high pressures, and provide a larger sampling volume than comparable lens‐based tools. Thus, we anticipate that these characterization efforts will be rewarded with novel discovery in new oceanic environments

    PACE Technical Report Series, Volume 6: Data Product Requirements and Error Budgets Consensus Document

    Get PDF
    This chapter summarizes ocean color science data product requirements for the Plankton, Aerosol, Cloud,ocean Ecosystem (PACE) mission's Ocean Color Instrument (OCI) and observatory. NASA HQ delivered Level-1 science data product requirements to the PACE Project, which encompass data products to be produced and their associated uncertainties. These products and uncertainties ultimately determine the spectral nature of OCI and the performance requirements assigned to OCI and the observatory. This chapter ultimately serves to provide context for the remainder of this volume, which describes tools developed that allocate these uncertainties into their components, including allowable OCI systematic and random uncertainties, observatory geo location uncertainties, and geophysical model uncertainties

    PACE Technical Report Series, Volume 4: Cloud Retrievals in the PACE Mission: PACE Science Team Consensus Document

    Get PDF
    Earth is a complex dynamical system exhibiting continuous change in its atmosphere, ocean,and surface elements. Nearly all (99.97%) of the energy driving these systems is linked to the Sun. Measurements of reflected sunlight contain a unique signature of wavelength-specific scattering and absorption interactions occurring between incoming solar energy and atmospheric (molecules, aerosols,clouds) and surface features Clouds can affect significantly both shortwave and long wave radiation, depending on altitude/vertical structure, thermodynamic phase, and optical properties. Low, warm, and optically thick clouds predominantly have a cooling effect, while high, cold, optically thin clouds can cause warming by absorbing warmer radiation emitted from the surface and lower atmosphere.When the net difference between outgoing and incoming solar radiation is matched by the net infrared radiation emitted to space, the Earth's climate is in radiative balance. While radiative forcing components (GHGs, aerosols - direct and indirect) contribute to a net radiative imbalance, climate sensitivity is ultimately determined by the contribution of various system feed backs. The role of cloud feedback in a warming climate is currently the largest inter-model uncertainty in climate sensitivity and therefore in climate prediction [Bony and Dufresne 2005]. A comprehensive understanding of current cloud propertiesand dynamic/microphysical processes requires a global perspective from satellites

    Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    Get PDF
    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers)
    corecore