34 research outputs found

    Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    Get PDF
    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results

    Turbulent ‘stopping plumes’ and plume pinch-off in uniform surroundings

    Get PDF
    Observations of turbulent convection in the environment are of variously sus- tained plume-like flows or intermittent thermal-like flows. At different times of the day the prevailing conditions may change and consequently the observed flow regimes may change. Understanding the link between these flows is of practical importance meteorologically, and here we focus our interest upon plume-like regimes that break up to form thermal-like regimes. It has been shown that when a plume rises from a boundary with low conductivity, such as arable land, the inability to maintain a rapid enough supply of buoyancy to the plume source can result in the turbulent base of the plume separating and rising away from the source. This plume ‘pinch-off’ marks the onset of the intermittent thermal-like behavior. The dynamics of turbulent plumes in a uniform environment are explored in order to investigate the phenomenon of plume pinch-off. The special case of a turbulent plume having its source completely removed, a ‘stopping plume’, is considered in particular. The effects of forcing a plume to pinch-off, by rapidly reducing the source buoyancy flux to zero, are shown experi- mentally. We release saline solution into a tank filled with fresh water generating downward propagating steady turbulent plumes. By rapidly closing the plume nozzle, the plumes are forced to pinch-off. The plumes are then observed to detach from the source and descend into the ambient. The unsteady buoyant region produced after pinch-off, cannot be described by the power-law behavior of either classical plumes or thermals, and so the terminology ‘stopping plume’ (analogous to a ‘starting plume’) is adopted for this type of flow. The propagation of the stopping plume is shown to be approximately linearly dependent on time, and we speculate therefore that the closure of the nozzle introduces some vorticity into the ambient, that may roll up to form a vortex ring dominating the dynamics of the base of a stopping plume

    Experiments on Hydrodynamic and Thermal Behaviors of Thin Liquid Films

    No full text
    ABSTRACT An experimental study of heat transfer into a thin film of liquid water on a rotating disk is described. The film was introduced from a flow collar at the center of a heated, horizontal disk at a fixed initial film thickness with a uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple / slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.0 lpm and 15.0 lpm corresponding to Reynolds numbers (based on the liquid inlet gap height and velocity) between 238 and 1188. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the entrance temperature of the liquid onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers. In addition to the heat transfer characterization, the thickness of the liquid film on the disk surface was measured by an optical method, including the characteristics of the hydraulic jump and the subcritical and supercritical flow regions

    Combustion with Multiple Flames under High Strain Rates

    No full text

    Entrainment in the Near and Far Field of Fire Plumes

    No full text
    This paper describes entrainment measurements made in fire plumes with a new technique. Measurements were in plumes rising from natural gas diffusion flames stabilized on 0.10, 0.19 and 0.50 m diameter burners and the heat release rates ranged from 10 to 200 kW. The heights examined ranged from elevations starting very close to the burner surface to distances about five times the average flame heights. Experiments indicate the presence of three regions: a region close to the burner surface where plume entrainment rates are independent of the fuel flow (or heat release) rates; a far field region above the flame top, where a simple point source model correlates the data reasonably well; and an intermediate region where entrainment appears to be similar to that of a turbulent plume

    Soot Topography In A Planar Diffusion Flame Wrapped By Interacting Line Vortices

    No full text
    An experimental study was carried out with the purpose of determining the soot topography in a diffusion flame interacting with two consecutively generated vortices. The previously used experimental set-up was modified for generation of dual vortices and characterization of soot distributions in the interaction region by the laser induced incandescence technique. It is demonstrated in this article that repeatable vortex flame interactions can be obtained and the vortex interaction results show some interesting features that have not been observed in single vortex interactions before

    Visible structure of buoyant diffusion flames

    No full text
    Natural gas diffusion flames stabilized on 0.10, 0.19 and 0.50 m. diameter porous bed burners have been studied for heat release rates ranging from 10 to 200 kW. Flame heights were measured from video tape recordings and by eye averaged techniques. The dependence of flame height on a dimensionless heat addition parameter shows a transition for values of the parameter around unity. For flames taller than three burner diameters, the initial diameter of the fire does not affect the length of the flame whereas for short flames, initial geometry becomes important. Another prominent feature of these flames is the presence of large scale axisymmetric structures which are formed close to the burner surface with more or less regular frequency and which rise through the flame region. These structures are responsible for the fluctuations of the flame top and strongly influence the geometry of the flame
    corecore