46 research outputs found

    Analysis of Clonal Type-Specific Antibody Reactions in Toxoplasma gondii Seropositive Humans from Germany by Peptide-Microarray

    Get PDF
    BACKGROUND: Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals. METHODOLOGY: A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100). FINDINGS: The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II-III, type I-III or type I-II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers. CONCLUSIONS: Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution

    CD40, autophagy and Toxoplasma gondii

    Full text link
    Toxoplasmagondii represents a pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the parasitophorous vacuoles. The dogma had been that the non-fusogenic nature of these vacuoles is irreversible. Recent studies revealed that this dogma is not correct. Cell-mediated immunity through CD40 re-routes the parasitophorous vacuoles to the lysosomal compartment by a process called autophagy. Autophagosome formation around the parasitophorous vacuole results in killing of the T. gondii. CD40-induced autophagy likely contributes to resistance against T. gondii particularly in neural tissue

    Some Aspects of Protozoan Infections in Immunocompromised Patients: A Review

    Full text link

    Rat model of congenital toxoplasmosis: rate of transmission of three Toxoplasma gondii strains to fetuses and protective effect of a chronic infection.

    No full text
    The incidence of congenital toxoplasmosis in Fischer rats infected between the 8th and 12th days of pregnancy with three different strains of Toxoplasma gondii (RH, 76K, and Prugniaud) were 58.2, 35.2, and 62.8%, respectively. No infected fetuses were collected from rats previously infected with RH or Prugniaud strain parasites, even if the rats were reinfected during pregnancy. Since pups from chronically infected mothers are protected from congenital toxoplasmosis, rat infection could thus constitute a relevant model for immunological studies and vaccine design

    Toxoplasma gondii in human astrocytes in vitro: interleukin (IL)-12 and IL-10 do not influence cystogenesis.

    No full text
    Interleukin (IL)-12, IL-10, and interferon (IFN)-gamma are major cytokines involved in the immune response against Toxoplasma gondii. Nevertheless, the role of IL-12 and IL-10 in the control of parasite replication and cytogenesis is not known yet, whereas the importance of IFN-gamma is documented. Furthermore, it is of paramount importance to study the interaction between T. gondii and cells from the central nervous system, e.g., astrocytes. In this study, we report that IL-12 and IL-10 have no effect on penetration, replication, or cystogenesis of the T. gondii Prugniaud strain in human astrocytes in vitro and do not antagonize the role of IFN-gamma on cystogenesis
    corecore