415 research outputs found
Molecular and Ionic shocks in the Supernova Remnant 3C391
New observations of the supernova remnant 3C391 are in the H2 2.12 micron and
[Fe II] 1.64 micron narrow-band filters at the Palomar 200-inch telescope, and
in the 5-15 micron CVF on ISOCAM. Shocked H2 emission was detected from the
region 3C391:BML, where broad millimeter CO and CS lines had previously been
detected. A new H2 clump was confirmed to have broad CO emission, demonstrating
that the near-infrared H2 images can trace previously undetected molecular
shocks. The [Fe II] emission has a significantly different distribution, being
brightest in the bright radio bar, at the interface between the supernova
remnant and the giant molecular cloud, and following filaments in the radio
shell. The near-infrared [Fe II] and the mid-infrared 12-18 micron filter
images are the first images to reveal the radiative shell of 3C391. The
mid-infrared spectrum is dominated by bright ionic lines and H2 S(2) through
S(7). There are no aromatic hydrocarbons associated with the shocks, nor is
their any mid-infrared continuum, suggesting that macromolecules and very small
grains are destroyed. Comparing 3C391 to the better-studied IC443, both
remnants have molecular- and ionic-dominated regions; for 3C391, the
ionic-dominated region is the interface into the giant molecular cloud, showing
that the main bodies of giant molecular clouds contain significant regions with
densities 100 to 1000/cm^3 and a small filling factor with higher-density. The
molecular shocked region resolves into 16 clumps of H2 emission, with some
fainter diffuse emission but with no associated near-infrared continuum
sources. One of the clumps is coincident with a previously-detected OH 1720 MHz
maser. These clumps are interpreted as a cluster of pre-stellar, dense
molecular cores that are presently being shocked by the supernova blast wave
Mid-Infrared Emission Features in the ISM: Feature-to-Feature Flux Ratios
Using a limited, but representative sample of sources in the ISM of our
Galaxy with published spectra from the Infrared Space Observatory, we analyze
flux ratios between the major mid-IR emission features (EFs) centered around
6.2, 7.7, 8.6 and 11.3 microns, respectively. In a flux ratio-to-flux ratio
plot of EF(6.2)/EF(7.7) as a function of EF(11.3)/EF(7.7), the sample sources
form roughly a -shaped locus which appear to trace, on an overall
basis, the hardness of a local heating radiation field. But some driving
parameters other than the radiation field may also be required for a full
interpretation of this trend. On the other hand, the flux ratio of
EF(8.6)/EF(7.7) shows little variation over the sample sources, except for two
HII regions which have much higher values for this ratio due to an ``EF(8.6\um)
anomaly,'' a phenomenon clearly associated with environments of an intense
far-UV radiation field. If further confirmed on a larger database, these trends
should provide crucial information on how the EF carriers collectively respond
to a changing environment.Comment: 16 pages, 1 figure, 1 table; accepted for publication in ApJ Letter
The Mid-Infrared Spectra of Normal Galaxies
The mid-infrared spectra (2.5 to 5 and 5.7 to 11.6 mu) obtained by ISO-PHOT
reveal the interstellar medium emission from galaxies powered by star formation
to be strongly dominated by the aromatic features at 6.2, 7.7, 8.6 and 11.3 mu.
Additional emission appears in-between the features, and an underlying
continuum is clearly evident at 3-5 mu. This continuum would contribute about a
third of the luminosity in the 3 to 13 mu range. The features together carry 5
to 30% of the 40-to-120 mu `FIR' luminosity. The relative fluxes in individual
features depend very weakly on galaxy parameters such as the far-infrared
colors, direct evidence that the emitting particles are not in thermal
equilibrium. The dip at 10 mu is unlikely to result from silicate absorption,
since its shape is invariant among galaxies. The continuum component has a f_nu
\~ nu^{0.65} shape between 3 and 5 mu and carries 1 to 4% of the FIR
luminosity; its extrapolation to longer wavelengths falls well below the
spectrum in the 6 to 12 mu range. This continuum component is almost certainly
of non-stellar origin, and is probably due to fluctuating grains without
aromatic features. The spectra reported here typify the integrated emission
from the interstellar medium of the majority of star-forming galaxies, and
could thus be used to obtain redshifts of highly extincted galaxies up to z=3
with SIRTF.Comment: 10 pages, 2 figures, uses AAS LaTeX; to appear in the Astrophysical
Journal Letter
Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N
We combine optical morphologies and photometry from HST, redshifts from Keck,
and mid-infrared luminosities from Spitzer for an optically selected sample
of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous
galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of
LIRGs from z~1 to lower redshift, in agreement with previous studies. In
addition, there is evidence for a morphological evolution of the populations of
LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the
peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar
range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the
peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to
have lower IR luminosity than peculiars. Only a few percent of LIRGs at any
redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is
well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear
fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than
M_B = -21, 75% are LIRGs, regardless of redshift. These results can be
explained by a scenario in which at high-z, most large spirals experience an
elevated star formation rate as LIRGs. Gas consumption results in a decline of
LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ
Disks around Hot Stars in the Trifid Nebula
We report on mid-IR observations of the central region in the Trifid nebula,
carried out with ISOCAM in several broad-band infrared filters and in the low
resolution spectroscopic mode provided by the circular variable filter.
Analysis of the emission indicates the presence of a hot dust component (500 to
1000 K) and a warm dust component at lower temperatures (150-200 K) around
several members of the cluster exciting the HII region, and other stars
undetected at optical wavelengths. Complementary VLA observations suggest that
the mid-IR emission could arise from a dust cocoon or a circumstellar disk,
evaporated under the ionization of the central source and the exciting star of
the nebula. In several sources the silicate band is seen in
emission. One young stellar source shows indications of crystalline silicates
in the circumstellar dust.Comment: 4 pages with 1 figur
- âŠ