440 research outputs found
Molecular and Ionic shocks in the Supernova Remnant 3C391
New observations of the supernova remnant 3C391 are in the H2 2.12 micron and
[Fe II] 1.64 micron narrow-band filters at the Palomar 200-inch telescope, and
in the 5-15 micron CVF on ISOCAM. Shocked H2 emission was detected from the
region 3C391:BML, where broad millimeter CO and CS lines had previously been
detected. A new H2 clump was confirmed to have broad CO emission, demonstrating
that the near-infrared H2 images can trace previously undetected molecular
shocks. The [Fe II] emission has a significantly different distribution, being
brightest in the bright radio bar, at the interface between the supernova
remnant and the giant molecular cloud, and following filaments in the radio
shell. The near-infrared [Fe II] and the mid-infrared 12-18 micron filter
images are the first images to reveal the radiative shell of 3C391. The
mid-infrared spectrum is dominated by bright ionic lines and H2 S(2) through
S(7). There are no aromatic hydrocarbons associated with the shocks, nor is
their any mid-infrared continuum, suggesting that macromolecules and very small
grains are destroyed. Comparing 3C391 to the better-studied IC443, both
remnants have molecular- and ionic-dominated regions; for 3C391, the
ionic-dominated region is the interface into the giant molecular cloud, showing
that the main bodies of giant molecular clouds contain significant regions with
densities 100 to 1000/cm^3 and a small filling factor with higher-density. The
molecular shocked region resolves into 16 clumps of H2 emission, with some
fainter diffuse emission but with no associated near-infrared continuum
sources. One of the clumps is coincident with a previously-detected OH 1720 MHz
maser. These clumps are interpreted as a cluster of pre-stellar, dense
molecular cores that are presently being shocked by the supernova blast wave
Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N
We combine optical morphologies and photometry from HST, redshifts from Keck,
and mid-infrared luminosities from Spitzer for an optically selected sample
of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous
galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of
LIRGs from z~1 to lower redshift, in agreement with previous studies. In
addition, there is evidence for a morphological evolution of the populations of
LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the
peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar
range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the
peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to
have lower IR luminosity than peculiars. Only a few percent of LIRGs at any
redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is
well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear
fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than
M_B = -21, 75% are LIRGs, regardless of redshift. These results can be
explained by a scenario in which at high-z, most large spirals experience an
elevated star formation rate as LIRGs. Gas consumption results in a decline of
LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ
Star formation rates of distant luminous infrared galaxies derived from Halpha and IR luminosities
We present a study of the star formation rate (SFR) for a sample of 16
distant galaxies detected by ISOCAM at 15um in the CFRS0300+00 and CFRS1400+52
fields. Their high quality and intermediate resolution VLT/FORS spectra have
allowed a proper correction of the Balmer emission lines from the underlying
absorption. Extinction estimates using the Hbeta/Hgamma and the Halpha/Hbeta
Balmer decrement are in excellent agreement, providing a robust measurement of
the instantaneous SFR based on the extinction-corrected Halpha luminosity. Star
formation has also been estimated exploiting the correlations between IR
luminosity and those at MIR and radio wavelengths. Our study shows that the
relationship between the two SFR estimates follow two distinct regimes: (1) for
galaxies with SFRIR below ~ 100Msolar/yr, the SFR deduced from Halpha
measurements is a good approximation of the global SFR and (2) for galaxies
near of ULIRGs regime, corrected Halpha SFR understimated the SFR by a factor
of 1.5 to 2. Our analyses suggest that heavily extincted regions completely
hidden in optical bands (such as those found in Arp 220) contribute to less
than 20% of the global budget of star formation history up to z=1.Comment: (1) GEPI, Obs. Meudon, France ;(2) CEA-Saclay, France ;(3) ESO,
Gemany ;(4) IAC, Spain. To appear in A&
- …