40 research outputs found

    Exploring conformational energy landscape of glassy disaccharides by CPMAS 13C NMR and DFT/GIAO simulations. I. Methodological aspects

    Full text link
    The aim of this article is to assess the ability of chemical shift surfaces to provide structural information on conformational distributions of disaccharides in glassy solid state. The validity of the general method leading to a simulation of inhomogeneous 13C chemical shift distributions is discussed in detail. In particular, a proper consideration of extrema and saddle points of the chemical shift map correctly accounts for the observed discontinuities in the experimental CPMAS spectra. Provided that these basic requirements are met, DFT/GIAO chemical shift maps calculated on relaxed conformations lead to a very satisfactory description of the experimental lineshapes. On solid-state trehalose as a model of amorphous disaccharide, this simulation approach defines unambiguously the most populated sugar conformation in the glass, and can help in discriminating the validity of different models of intramolecular energy landscape. Application to other molecular systems with broad conformational populations is foreseen to produce a larger dependence of the calculated chemical shift distribution on the conformational map

    "The good, the bad and the ugly" of chitosans

    Get PDF
    The objective of this paper is to emphasize the fact that while consistent interest has been paid to the industrial use of chitosan, minor attention has been devoted to spread the knowledge of a good characterization of its physico-chemical properties. Therefore, the paper attempts to critically comment on the conflicting experimental results, highlighting the facts, the myths and the controversies. The goal is to indicate how to take advantage of chitosan versatility, to learn how to manage its variability and show how to properly tackle some unexpected undesirable features. In the sections of the paper various issues that relate chitosan properties to some basic features and to advanced solutions and applications are presented. The introduction outlines some historical pioneering works, where the chemistry of chitosan was originally explored. Thereafter, particular reference is made to analytical purity, characterization and chain modifications. The macromolecular characterization is mostly related to molecular weight and to degree of acetylation, but also refers to the conformational and rheological properties and solution stability. Then, the antimicrobial activity of chitosan in relation with its solubility is reviewed. A section is dedicated to the formulation of chitosan biomaterials, from gel to nanobeads, exploring their innovative application as active carrier nanoparticles. Finally, the toxicity issue of chitosan as a polymer and as a constructed nanomaterial is briefly commented in the conclusions

    Exploring conformational energy landscape of glassy disaccharides by CPMAS 13C NMR and DFT/GIAO simulations. II. Enhanced molecular flexibility in amorphous trehalose

    Full text link
    This paper deals with the comparative use of the chemical shift surfaces to simulate experimental 13C CPMAS data on amorphous solid state disaccharides, paying particular attention to -1-1 linkage of trehalose, to -1,4 linkage between pyranose rings (lactose) and to linkage implying a furanose ring (sucrose). The combination of molecular mechanics with DFT/GIAO ab-initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose experiences in amorphous solid state compared to the other sugars. An attempt to relate this property to the balance between intra- and inter-molecular hydrogen bonding network in the glass is presented

    ESTAC Preface

    No full text
    corecore