95 research outputs found
The Retinoblastoma Family Member p107 Binds to B-MYB and Suppresses Its Autoregulatory Activity *
It was recently reported that B-MYB can overcome p107-induced growth arrest. Here we show that B-MYB autoregulation of its own transcription is specifically suppressed by p107 and transient transfection assays with p107 deletion constructs determined that the carboxyl terminus of the protein, containing the major pocket region, was associated with inhibition of B-MYB-dependent transactivation. Consistent with these results, co-immunoprecipitation studies showed that p107 interacted in vivo with B-MYB through its pocket and carboxyl terminus domain. Thus, B-MYB-dependent promotion of cell proliferation and gene transactivation might be specifically repressed by the growth suppressor p107 through direct interaction with B-MYB
Effective erythropoiesis and HbF reactivation induced by kit ligand in β-thalassemia
In human β-thalassemia, the imbalance between α- and non–α-globin chains causes ineffective erythropoiesis, hemolysis, and anemia: this condition is effectively treated by an enhanced level of fetal hemoglobin (HbF). In spite of extensive studies on pharmacologic induction of HbF synthesis, clinical trials based on HbF reactivation in β-thalassemia produced inconsistent results. Here, we investigated the in vitro response of β-thalassemic erythroid progenitors to kit ligand (KL) in terms of HbF reactivation, stimulation of effective erythropoiesis, and inhibition of apoptosis. In unilineage erythroid cultures of 20 patients with intermedia or major β-thalassemia, addition of KL, alone or combined with dexamethasone (Dex), remarkably stimulated cell proliferation (3-4 logs more than control cultures), while decreasing the percentage of apoptotic and dyserythropoietic cells (<5%). More important, in both thalassemic groups, addition of KL or KL plus Dex induced a marked increase of γ-globin synthesis, thus reaching HbF levels 3-fold higher than in con-trol cultures (eg, from 27% to 75% or 81%, respectively, in β-thalassemia major). These studies indicate that in β-thalassemia, KL, alone or combined with Dex, induces an expansion of effective erythropoiesis and the reactivation of γ-globin genes up to fetal levels and may hence be considered as a potential therapeutic agent for this disease
Expression of Caveolin-1 Is Required for the Transport of Caveolin-2 to the Plasma Membrane RETENTION OF CAVEOLIN-2 AT THE LEVEL OF THE GOLGI COMPLEX
Caveolins-1 and -2 are normally co-expressed, and they form a hetero-oligomeric complex in many cell types. These caveolin hetero-oligomers are thought to represent the assembly units that drive caveolae formation in vivo. However, the functional significance of the interaction between caveolins-1 and -2 remains unknown. Here, we show that caveolin-1 co-expression is required for the transport of caveolin-2 from the Golgi complex to the plasma membrane. We identified a human erythroleukemic cell line, K562, that expresses caveolin-2 but fails to express detectable levels of caveolin-1. This allowed us to stringently assess the effects of recombinant caveolin-1 expression on the behavior of endogenous caveolin-2. We show that expression of caveolin-1 in K562 cells is sufficient to reconstitute the de novo formation of caveolae in these cells. In addition, recombinant expression of caveolin-1 allows caveolin-2 to form high molecular mass oligomers that are targeted to caveolae-enriched membrane fractions. In striking contrast, in the absence of caveolin-1 expression, caveolin-2 forms low molecular mass oligomers that are retained at the level of the Golgi complex. Interestingly, we also show that expression of caveolin-1 in K562 cells dramatically up-regulates the expression of endogenous caveolin-2. Northern blot analysis reveals that caveolin-2 mRNA levels remain constant under these conditions, suggesting that the expression of caveolin-1 stabilizes the caveolin-2 protein. Conversely, transient expression of caveolin-2 in CHO cells is sufficient to up-regulate endogenous caveolin-1 expression. Thus, the formation of a hetero-oligomeric complex between caveolins-1 and -2 stabilizes the caveolin-2 protein product and allows caveolin-2 to be transported from the Golgi complex to the plasma membrane
HbF reactivation in sibling BFU-E colonies: synergistic interaction of kit ligand with low-dose dexamethasone
Mechanisms underlying fetal hemoglobin (HbF) reactivation in stress erythropoiesis have not been fully elucidated. We suggested that a key role is played by kit ligand (KL). Because glucocorticoids (GCs) mediate stress erythropoiesis, we explored their capacity to potentiate the stimulatory effect of KL on HbF reactivation, as evaluated in unilineage erythropoietic culture of purified adult progenitors (erythroid burst-forming units [BFU-Es]). The GC derivative dexamethasone (Dex) was tested in minibulk cultures at graded dosages within the therapeutical range (10−6 to 10−9M). Dex did not exert significant effects alone, but synergistically it potentiated the action of KL in a dose-dependent fashion. Specifically, Dex induced delayed erythroid maturation coupled with a 2-log increased number of generated erythroblasts and enhanced HbF synthesis up to 85% F cells and 55% γ-globin content at terminal maturation (ie, in more than 80%-90% mature erythroblasts). Equivalent results were obtained in unicellular erythroid cultures of sibling BFU-Es treated with KL alone or combined with graded amounts of Dex. These results indicate that the stimulatory effect of KL + Dex is related to the modulation of γ-globin expression rather than to recruitment of BFU-Es with elevated HbF synthetic potential. At the molecular level, Id2 expression is totally suppressed in control erythroid culture but is sustained in KL + Dex culture. Hypothetically, Id2 may mediate the expansion of early erythroid cells, which correlates with HbF reactivation. These studies indicate that GCs play an important role in HbF reactivation. Because Dex acts at dosages used in immunologic disease therapy, KL + Dex administration may be considered to develop preclinical models for β-hemoglobinopathy treatment
Stromal cell–derived factor 1α increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells
AbstractThe alpha chemokine receptor CXCR4 has been shown to be expressed on human hematopoietic progenitor cells and during the megakaryocytic differentiation pathway. Stromal cell–derived factor 1 (SDF-1) is the ligand for CXCR4. In this study, the role of SDF-1α in megakaryocytopoiesis was investigated. CD34+ progenitors purified from peripheral blood were grown in serum-free liquid suspension culture supplemented with thrombopoietin to obtain a virtually pure megakaryocytic progeny. In this condition, the addition of SDF-1α gives rise to megakaryocytes (MKs) showing an increased DNA content and a rise of lobated nuclei, as compared with untreated cells: at day 5, approximately 20% of the cells already showed the presence of more than one nuclear lobe versus fewer than 5% in the control cells; at day 12, approximately 85% of the cells were of large size and markedly polyploid, whereas approximately 60% of the control cells were polyploid, showed fewer lobes, and were a smaller size. This effect was dose-dependent and did not affect the megakaryocytic proliferation. Experiments with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 suggested a role for MAPK pathway on SDF-1α–induced endomitosis. Furthermore, SDF-1α induced a significant increase in the number of proplatelet-bearing MKs and promoted the migration of megakaryocytic cells. Treatment with SDF-1α caused reduction in CXCR4 abundance on the plasma membrane, seemingly owing to receptor internalization. Furthermore, the presence of SDF-1α did not affect the expression of megakaryocytic markers, indicating that differentiation and polyploidization are independently regulated events
Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states
<p>Abstract</p> <p>Background</p> <p>The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario.</p> <p>Results</p> <p>We developed serum-free liquid suspension unilineage cultures of cord blood (CB) CD34<sup>+ </sup>hematopoietic progenitor cells through erythroid (E), megakaryocytic (MK), granulocytic (G) and monocytic (Mo) pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs.</p> <p>Conclusions</p> <p>Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.</p
Absence of Caspase 8 and High Expression of PED Protect Primitive Neural Cells from Cell Death
The mechanisms that control neural stem and progenitor cell survival are unknown. In several pathological conditions, death receptor (DR) ligands and inflammatory cytokines exert a deleterious effect on neurons, whereas primitive neural cells migrate and survive in the site of lesion. Here, we show that even in the presence of inflammatory cytokines, DRs are unable to generate death signals in primitive neural cells. Neural stem and progenitor cells did not express caspase 8, the presence of which is required for initiating the caspase cascade. However, exogenous or cytokine-mediated expression of caspase 8 was not sufficient to restore their DR sensitivity. Searching for molecules potentially able to block DR death-inducing signaling complex (DISC), we found that primitive neural cells expressed high levels of the death effector domain-containing protein PED (also known as PEA-15). PED localized in the DISC and prevented caspase 8 recruitment and activation. Moreover, lentiviral-mediated delivery of PED antisense DNA resulted in dramatic down-regulation of the endogenous gene expression and sensitization of primitive neural cells to apoptosis mediated by inflammatory cytokines and DRs. Thus, absence of caspase 8 and high expression of PED constitute two levels of protection from apoptosis induced by DRs and inflammatory cytokines in neural stem and progenitor cells
- …