179 research outputs found

    Efficient Transductive Online Learning via Randomized Rounding

    Full text link
    Most traditional online learning algorithms are based on variants of mirror descent or follow-the-leader. In this paper, we present an online algorithm based on a completely different approach, tailored for transductive settings, which combines "random playout" and randomized rounding of loss subgradients. As an application of our approach, we present the first computationally efficient online algorithm for collaborative filtering with trace-norm constrained matrices. As a second application, we solve an open question linking batch learning and transductive online learningComment: To appear in a Festschrift in honor of V.N. Vapnik. Preliminary version presented in NIPS 201

    Applications of regularized least squares to pattern classification

    Get PDF
    AbstractWe survey a number of recent results concerning the behaviour of algorithms for learning classifiers based on the solution of a regularized least-squares problem

    On the Complexity of Learning with Kernels

    Get PDF
    A well-recognized limitation of kernel learning is the requirement to handle a kernel matrix, whose size is quadratic in the number of training examples. Many methods have been proposed to reduce this computational cost, mostly by using a subset of the kernel matrix entries, or some form of low-rank matrix approximation, or a random projection method. In this paper, we study lower bounds on the error attainable by such methods as a function of the number of entries observed in the kernel matrix or the rank of an approximate kernel matrix. We show that there are kernel learning problems where no such method will lead to non-trivial computational savings. Our results also quantify how the problem difficulty depends on parameters such as the nature of the loss function, the regularization parameter, the norm of the desired predictor, and the kernel matrix rank. Our results also suggest cases where more efficient kernel learning might be possible

    Bandits with heavy tail

    Full text link
    The stochastic multi-armed bandit problem is well understood when the reward distributions are sub-Gaussian. In this paper we examine the bandit problem under the weaker assumption that the distributions have moments of order 1+\epsilon, for some Ͼ∈(0,1]\epsilon \in (0,1]. Surprisingly, moments of order 2 (i.e., finite variance) are sufficient to obtain regret bounds of the same order as under sub-Gaussian reward distributions. In order to achieve such regret, we define sampling strategies based on refined estimators of the mean such as the truncated empirical mean, Catoni's M-estimator, and the median-of-means estimator. We also derive matching lower bounds that also show that the best achievable regret deteriorates when \epsilon <1

    Cooperative Online Learning: Keeping your Neighbors Updated

    Full text link
    We study an asynchronous online learning setting with a network of agents. At each time step, some of the agents are activated, requested to make a prediction, and pay the corresponding loss. The loss function is then revealed to these agents and also to their neighbors in the network. Our results characterize how much knowing the network structure affects the regret as a function of the model of agent activations. When activations are stochastic, the optimal regret (up to constant factors) is shown to be of order αT\sqrt{\alpha T}, where TT is the horizon and α\alpha is the independence number of the network. We prove that the upper bound is achieved even when agents have no information about the network structure. When activations are adversarial the situation changes dramatically: if agents ignore the network structure, a Ω(T)\Omega(T) lower bound on the regret can be proven, showing that learning is impossible. However, when agents can choose to ignore some of their neighbors based on the knowledge of the network structure, we prove a O(χ‾T)O(\sqrt{\overline{\chi} T}) sublinear regret bound, where χ‾≥α\overline{\chi} \ge \alpha is the clique-covering number of the network

    Online Learning of Noisy Data with Kernels

    Full text link
    We study online learning when individual instances are corrupted by adversarially chosen random noise. We assume the noise distribution is unknown, and may change over time with no restriction other than having zero mean and bounded variance. Our technique relies on a family of unbiased estimators for non-linear functions, which may be of independent interest. We show that a variant of online gradient descent can learn functions in any dot-product (e.g., polynomial) or Gaussian kernel space with any analytic convex loss function. Our variant uses randomized estimates that need to query a random number of noisy copies of each instance, where with high probability this number is upper bounded by a constant. Allowing such multiple queries cannot be avoided: Indeed, we show that online learning is in general impossible when only one noisy copy of each instance can be accessed.Comment: This is a full version of the paper appearing in the 23rd International Conference on Learning Theory (COLT 2010

    Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems

    Full text link
    Multi-armed bandit problems are the most basic examples of sequential decision problems with an exploration-exploitation trade-off. This is the balance between staying with the option that gave highest payoffs in the past and exploring new options that might give higher payoffs in the future. Although the study of bandit problems dates back to the Thirties, exploration-exploitation trade-offs arise in several modern applications, such as ad placement, website optimization, and packet routing. Mathematically, a multi-armed bandit is defined by the payoff process associated with each option. In this survey, we focus on two extreme cases in which the analysis of regret is particularly simple and elegant: i.i.d. payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, we also analyze some of the most important variants and extensions, such as the contextual bandit model.Comment: To appear in Foundations and Trends in Machine Learnin

    The ABACOC Algorithm: a Novel Approach for Nonparametric Classification of Data Streams

    Full text link
    Stream mining poses unique challenges to machine learning: predictive models are required to be scalable, incrementally trainable, must remain bounded in size (even when the data stream is arbitrarily long), and be nonparametric in order to achieve high accuracy even in complex and dynamic environments. Moreover, the learning system must be parameterless ---traditional tuning methods are problematic in streaming settings--- and avoid requiring prior knowledge of the number of distinct class labels occurring in the stream. In this paper, we introduce a new algorithmic approach for nonparametric learning in data streams. Our approach addresses all above mentioned challenges by learning a model that covers the input space using simple local classifiers. The distribution of these classifiers dynamically adapts to the local (unknown) complexity of the classification problem, thus achieving a good balance between model complexity and predictive accuracy. We design four variants of our approach of increasing adaptivity. By means of an extensive empirical evaluation against standard nonparametric baselines, we show state-of-the-art results in terms of accuracy versus model size. For the variant that imposes a strict bound on the model size, we show better performance against all other methods measured at the same model size value. Our empirical analysis is complemented by a theoretical performance guarantee which does not rely on any stochastic assumption on the source generating the stream
    • …
    corecore