16 research outputs found

    Evaluation of fucosylated receptors for Cholera toxin in the human small intestine

    Get PDF
    Cholera toxin (CT) produced by Vibrio cholerae is the causative agent for the diarrheal disease cholera. Cholera is yearly afflicting millions and is estimated to kill over 100 000 people every year. In this thesis I aimed to better understand the role of noncanonical CT receptors, e.g. receptors other than the glycolipid GM1. Epidemiological studies have found a link between cholera severity and blood group indicating that histo-blood group antigens (HBGAs) could play a role as receptors for CT. The work presented in this thesis shows that CT readily binds to the HBGA Lewis X on cells and on some cells CTB binding correlates with the level of Lewis X. Furthermore, we show that other fucosylated glycans such as Lewis Y, A/BLewis Y and 2´-fucosyllactose (found in human breast milk) readily inhibit CT binding to cell lines and primary cells from human small intestine. In contrast, sialylated or non-fucosylated glycans did not show any inhibitory effect on CT binding to human cell lines indicating a fucose-dependent binding. This was further confirmed in blocking studies using long synthetic polymers displaying glucose, fucose, galactose or a mix of the latter two. Functional evaluation identified that the fucose-binding lectin AAL completely blocked the effect of CT, but so could the galactose-binding lectin PNA. The galactose-fucose polymers yielded a partial inhibition of CT intoxication of human small intestinal enteroids whereas GM1 glycan completely blocked the effect of CT. Hence, fucosylated glycans are involved in attachment of CT to the intestinal wall. However, if this binding assists or counteracts subsequent internalization by other receptors carrying terminal galactoses remains to be determined. Importantly, these receptors can be other glycans than GM1 as this thesis show GM1-independent CT-mediated intoxication

    Intestinal Ketogenesis and Permeability

    No full text
    Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver. The function of intestinal ketogenesis is unknown but has been described in suckling rats and mice pups, possibly in order to allow large molecules, such as immunoglobulins, to pass over the intestinal barrier. Therefore, we hypothesized that ketone bodies could regulate intestinal barrier function, e.g., via regulation of tight junction proteins. The primary aim was to compare the effects of HFD that can induce intestinal ketogenesis to an equicaloric carbohydrate diet on inflammatory responses, nutrition sensing, and intestinal permeability in human jejunal mucosa. Fifteen healthy volunteers receiving a 2-week HFD diet compared to a high-carbohydrate diet were compared. Blood samples and mixed meal tests were performed at the end of each dietary period to examine inflammation markers and postprandial endotoxemia. Jejunal biopsies were assessed for protein expression using Western blotting, immunohistochemistry, and morphometric characteristics of tight junctions by electron microscopy. Functional analyses of permeability and ketogenesis were performed in Caco-2 cells, mice, and human enteroids. Ussing chambers were used to analyze permeability. CRP and ALP values were within normal ranges and postprandial endotoxemia levels were low and did not differ between the two diets. The PPARα receptor was ketone body-dependently reduced after HFD. None of the tight junction proteins studied, nor the basal electrical parameters, were different between the two diets. However, the ketone body inhibitor hymeglusin increased resistance in mucosal biopsies. In addition, the tight junction protein claudin-3 was increased by ketone inhibition in human enteroids. The ketone body β-Hydroxybutyrate (βHB) did not, however, change the mucosal transition of the large-size molecular FD4-probe or LPS in Caco-2 and mouse experiments. We found that PPARα expression was inhibited by the ketone body βHB. As PPARα regulates HMGCS expression, the ketone bodies thus exert negative feedback signaling on their own production. Furthermore, ketone bodies were involved in the regulation of permeability on intestinal mucosal cells in vitro and ex vivo. We were not, however, able to reproduce these effects on intestinal permeability in vivo in humans when comparing two weeks of high-fat with high-carbohydrate diet in healthy volunteers. Further, neither the expression of inflammation markers nor the aggregate tight junction proteins were changed. Thus, it seems that not only HFD but also other factors are needed to permit increased intestinal permeability in vivo. This indicates that the healthy gut can adapt to extremes of macro-nutrients and increased levels of intestinally produced ketone bodies, at least during a shorter dietary challenge

    PRR11 unveiled as a top candidate biomarker within the RBM3-regulated transcriptome in pancreatic cancer

    No full text
    The outlook for patients with pancreatic cancer remains dismal. Treatment options are limited and chemotherapy remains standard of care, leading to only modest survival benefits. Hence, there is a great need to further explore the mechanistic basis for the intrinsic therapeutic resistance of this disease, and to identify novel predictive biomarkers. RNA-binding motif protein 3 (RBM3) has emerged as a promising biomarker of disease severity and chemotherapy response in several types of cancer, including pancreatic cancer. The aim of this study was to unearth RBM3-regulated genes and proteins in pancreatic cancer cells in vitro, and to examine their expression and prognostic significance in human tumours. Next-generation RNA sequencing was applied to compare transcriptomes of MIAPaCa-2 cells with and without RBM3 knockdown. The prognostic value of differentially expressed genes (DEGs) was examined in The Cancer Genome Atlas (TCGA). Top deregulated genes were selected for further studies in vitro and for immunohistochemical analysis of corresponding protein expression in tumours from a clinically well-annotated consecutive cohort of 46 patients with resected pancreatic cancer. In total, 19 DEGs (p < 0.01) were revealed, among which some with functions in cell cycle and cell division stood out; PDS5A (PDS cohesin associated factor A) as the top downregulated gene, CCND3 (cyclin D3) as the top upregulated gene, and PRR11 (proline rich 11) as being highly prognostic in TCGA. Silencing of RBM3 in MiaPaCa-2 cells led to congruent alterations of PDS5A, cyclin D3, and PRR11 levels. High protein expression of PRR11 was associated with adverse clinicopathological features and shorter overall survival. Neither PDS5A nor cyclin D3 protein expression was prognostic. This study unveils several RBM3-regulated genes with potential clinical relevance in pancreatic cancer, among which PRR11 shows the most consistent association with disease severity, at both transcriptome and protein levels

    Antigen-Presenting B Cells Program the Efferent Lymph T Helper Cell Response

    No full text
    B cells interact with T follicular helper (Tfh) cells in germinal centers (GCs) to generate high-affinity antibodies. Much less is known about how cognate T–B-cell interactions influence Th cells that enter circulation and peripheral tissues. Therefore, we generated mice lacking MHC-II expressing B cells and, by thoracic duct cannulation, analyzed Th cells in the efferent lymph at defined intervals post-immunization. Focusing on gut-draining mesenteric lymph nodes (MLNs), we show that antigen-specific α4β7+ gut-homing effector Th cells enter the circulation prior to CXCR5+PD-1+ Tfh-like cells. B cells appear to have no or limited impact on the early generation and egress of gut-homing Th cells but are critical for the subsequent appearance of Tfh-like cells that peak in the lymph before GCs have developed. At this stage, antigen-presenting B cells also reduce the proportion of α4β7+ Th cells in the MLN and efferent lymph. Furthermore, cognate B-cell interaction drives a broad transcriptional program in Th cells, including IL-4 that is confined to the Tfh cell lineage. The IL-4-producing Tfh-like cells originate from Bcl6+ precursors in the LNs and have gut-homing capacity. Hence, B cells program the efferent lymph Th cell response within a limited window of time after antigenic challenge

    Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells

    No full text
    Cholera toxin (CT) enters host intestinal epithelia cells, and its retrograde transport to the cytosol results in the massive loss of fluids and electrolytes associated with severe dehydration. To initiate this intoxication process, the B subunit of CT (CTB) first binds to a cell surface receptor displayed on the apical surface of the intestinal epithelia. While the monosialoganglioside GM1 is widely accepted to be the sole receptor for CT, intestinal epithelial cell lines also utilize fucosylated glycan epitopes on glycoproteins to facilitate cell surface binding and endocytic uptake of the toxin. Further, l-fucose can competively inhibit CTB binding to intestinal epithelia cells. Here, we use competition binding assays with l-fucose analogs to decipher the molecular determinants for l-fucose inhibition of cholera toxin subunit B (CTB) binding. Additionally, we find that mono- and difucosylated oligosaccharides are more potent inhibitors than l-fucose alone, with the LeY tetrasaccharide emerging as the most potent inhibitor of CTB binding to two colonic epithelial cell lines (T84 and Colo205). Finally, a non-natural fucose-containing polymer inhibits CTB binding two orders of magnitude more potently than the LeY glycan when tested against Colo205 cells. This same polymer also inhibits CTB binding to T84 cells and primary human jejunal epithelial cells in a dose-dependent manner. These findings suggest the possibility that polymeric display of fucose might be exploited as a prophylactic or therapeutic approach to block the action of CT toward the human intestinal epithelium

    Fucosylation and protein glycosylation create functional receptors for cholera toxin

    No full text
    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI: http://dx.doi.org/10.7554/eLife.09545.00

    Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells

    No full text
    Cholera toxin (CT) enters host intestinal epithelia cells, and its retrograde transport to the cytosol results in the massive loss of fluids and electrolytes associated with severe dehydration. To initiate this intoxication process, the B subunit of CT (CTB) first binds to a cell surface receptor displayed on the apical surface of the intestinal epithelia. While the monosialoganglioside GM1 is widely accepted to be the sole receptor for CT, intestinal epithelial cell lines also utilize fucosylated glycan epitopes on glycoproteins to facilitate cell surface binding and endocytic uptake of the toxin. Further, l-fucose can competively inhibit CTB binding to intestinal epithelia cells. Here, we use competition binding assays with l-fucose analogs to decipher the molecular determinants for l-fucose inhibition of cholera toxin subunit B (CTB) binding. Additionally, we find that mono- and difucosylated oligosaccharides are more potent inhibitors than l-fucose alone, with the LeY tetrasaccharide emerging as the most potent inhibitor of CTB binding to two colonic epithelial cell lines (T84 and Colo205). Finally, a non-natural fucose-containing polymer inhibits CTB binding two orders of magnitude more potently than the LeY glycan when tested against Colo205 cells. This same polymer also inhibits CTB binding to T84 cells and primary human jejunal epithelial cells in a dose-dependent manner. These findings suggest the possibility that polymeric display of fucose might be exploited as a prophylactic or therapeutic approach to block the action of CT toward the human intestinal epithelium

    GM1 ganglioside-independent intoxication by Cholera toxin

    No full text
    <div><p>Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (Le<sup>X</sup>) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the Le<sup>X</sup> glycan <i>in vitro</i> when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to Le<sup>X</sup>. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.</p></div

    CTB binding to primary human intestinal cells can be blocked by interference with fucosylated structures.

    No full text
    <p><b>(A)</b> Bar graph showing relative absorbance values from an ELISA with immobilized anti-Le<sup>X</sup>, and detection with CTB-HRP. Samples as indicated from lysates of isolated human cells (2 μg protein/ml). Each dot represents a human donor (n = 5–8). <b>(B)</b> CD66 or <b>(C)</b> CD66 and Le<sup>X</sup> expression by jejunal epithelial cells that were isolated using EDTA medium (villi) or enzymatic degradation after EDTA treatment (non-villi or crypt). Histograms from flow cytometry analyses of CTB-, G33D- and OVA-binding to the differentially enriched epithelial cells. <b>(B)</b> EpCAM<sup>+</sup> cells and <b>(C)</b> EpCAM<sup>+</sup>Le<sup>X+</sup> cells. <b>(D-G)</b> Bar graph showing percent of gMFI of CTB binding to jejunal epithelial cells by pretreatment of the cells with <b>(D)</b> lectins, <b>(E)</b> sugars, <b>(F)</b> oligosaccharides and <b>(G)</b> HSA-linked oligosaccharides. Graphs show the percent of gMFI of CTB binding to the cells where 100% represents CTB staining with no blocking oligosaccharide. Each dot represents a donor in <b>(D)</b> n = 4–12, <b>(E)</b> n = 6–8, <b>(F)</b> n = 6–12, <b>(G)</b> n = 6–7. Significance was calculated using a one-way-ANOVA with Tukey correction compared to CTB without block if not indicated otherwise with bars (**** = p<0,0001, *** = p<0,005, ** = p<0,01 and * = p<0,05).</p

    CT induces an intact diarrheal response in mice lacking GM1 and GM1 related GSLs.

    No full text
    <p><b>(A)</b> Representative histograms from flow cytometry analyses of CTB-, G33D- and OVA-binding to WT and KO jejunal cells (non-villi epithelial and CD45+ cells). <b>(B)</b> Bar graph showing CTB, G33D and OVA gMFI of non-villi jejunal epithelial cells from wt (black) and KO (gray). <b>(C-F)</b> Bar graphs showing percent of gMFI of non-blocked CTB binding to non-villi jejunal epithelial cells (wt black and KO gray) following pretreatment of the cells with <b>(C)</b> lectins or CTB with <b>(D)</b> sugars, <b>(E)</b> oligosaccharides and <b>(F)</b> HSA-linked oligosaccharides. Graphs show the percent of gMFI of CTB binding to the cells where 100% represents CTB staining with no blocking. <b>(G-H)</b> Bar graph showing intestine-animal ratio (by weight) for WT and KO mice gavaged with PBS with or without CT. <b>(H)</b> KO mice were fed chow with (open circles) or without (full circles) NB-DNJ for 4 weeks prior to gavage. The graphs are from pooled experiments where each dot represents one animal (n = 4–30). Significance was calculated using a one-way-ANOVA with Tukey correction (**** = p<0,0001, *** = p<0,005, ** = p<0,01 and * = p<0,05).</p
    corecore