8 research outputs found

    Design and implementation of a Wake-up Radio receiver for fast 250 kbps bit rate

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wake-up radio (WuR) systems have appeared as a solution for reducing power consumption. As IEEE 802.11 is the preferred radio technology, IEEE 802.11 task group TGba focuses on the IEEE 802.11-based WuR standardization. We present an implementation of a wake-up receiver (WuRx), based on off-the-shelf components, using a microcontroller unit for decodification at the fastest bit rate of 250 kb/s allowed by TGba. The proof-of-concept that has been developed, does not aim at presenting an optimized power consumption solution for WuRx, but at enabling a comparative evaluation for several reception cases based on latency and power utilization. The evaluation of the performance shows the WuRx robustness in presence of frame receptions different from the expected for WuR operation or addressed to other WuRx in the surrounding area. This letter also presents the convenience of implementing a mechanism for avoiding consecutive erroneous WuRx identification matchings within the same WuR procedure.Postprint (author's final draft

    An alternative to IEEE 802.11ba: wake-up radio with legacy IEEE 802.11 transmitters

    Get PDF
    Current standardization process for Wake-up Radio (WuR) within the IEEE 802.11 Working Group, known as the IEEE 802.11ba, has brought interest to the IEEE 802.11-related technologies for the implementation of WuR systems. This paper proposes a new WuR system, where the Wake-up Transmitter (WuTx) is based on the legacy IEEE 802.11 Orthogonal Frequency Division Modulation (OFDM) Physical Layer (PHY) specification. Using the IEEE 802.11, OFDM PHY makes it possible for an IEEE 802.11a/g/n/ac transmitter to operate as WuTx for this WuR system. The WuTx generates a Wake-up Signal (WuS) coded with an amplitude-based digital modulation, achieving a bit rate of 250 kbps. This modulation, which we call Peak-Flat modulation, can be received using low-power receivers. A simulated proof of concept of the WuTx based on the IEEE 802.11g is presented and evaluated using MATLAB WLAN Toolbox. A method to generate the Peak-Flat modulated WuS from an IEEE 802.11a/g standard-compliant transmitter, using only software-level access, is explained. In addition, two possible low-power Wake-up Receiver (WuRx) architectures capable of decoding the presented modulation are proposed. The design of those receivers is generic enough to be used as a reference to compare the performance of the Peak-Flat Modulation with the other state-of-the-art approaches. The evaluation results conclude that the Peak-Flat modulation has similar performance compared to the other IEEE 802.11 WuR solutions on the reference receivers. Moreover, this solution provides a notorious advantage: legacy OFDM-based IEEE 802.11 transmitters can generate the Peak-Flat modulated WuS.Postprint (published version

    Desenvolupament d'un Gateway de baix cost per a domòtica

    No full text

    Desenvolupament d'un Gateway de baix cost per a domòtica

    No full text

    Construcció d'un REM (Radio Enviroment Map) de TV white spaces per a l'àrea metropolitana de Barcelona

    No full text
    L'objectiu és construir un REM (Radio Environment Map) a partir mesures de la banda de TV realitzades a l'àrea metropolitana de Barcelona (AMB). La construcció inclou tant el disseny i realització d'un entorn gràfic que permeti consultar el REM de forma fàcil d'usar, com la implementació i corresponent validació d'un algoritme d'interpolació que calculi la informació del REM per aquells punts dels quals no es disposa de mesures.[ANGLÈS] This thesis covers the construction of a REM (Radio Environment Map) for TV-WS (TV white spaces) for the metropolitan area of Barcelona, and a GUI for accessing it. A REM is a key piece in the implementation of a cognitive network since proportions environmental information to cognitive devices, allowing them to decide what channels they have to use, and when they have to use them in order to perform optimally. The term TV-WS refers to the spectral zones that are assigned to TV broadcasting, but they are not used for that purpose since the transition to the DVB-T standard. This new standard allowed for better spectral efficiency in TV broadcasting, fact that let to the underutilization of the TV assigned spectrum. This underutilized spectrum could be used opportunistically for unlicensed users (cognitive users) to establish a REM backed cognitive network. Field measurements from the metropolitan area of Barcelona were used for REM construction, which have been posteriorly processed to adapt them to the REM structure. The access to the REM is carried over a REST API, which is also used to administrate it. The GUI has been implemented as a webpage that can be used to access the REM data, and to administrate the REM. Finally an interface which permits to use the REM to manage simulated cognitive devices has been developed, in order to showcase the capabilities of this technology.[CASTELLÀ] Esta tesis describe la construcción de un REM (Radio Enviroment Map) de TV-WS(TV White Spaces) usando medidas de canal tomadas en la área metropolitana de Barcelona, además de una GUI para facilitar su consulta. Un REM es una pieza clave para la implementación de una red cognitiva, ya que proporciona a los dispositivos información del medio radio en el que se encuentran, permitiéndoles que canales utilizar, y cuando utilizaros para operar de forma óptima. Los TV-WS son las zonas espectrales asignadas a televisión pero que no se usan para ese cometido desde la transición al estándar DVB-T, que aumentó en gran medida la eficiencia espectral de estas emisiones, dejando gran parte del espectro asignado a usos televisivos sin utilizar. Este espectro podría utilizarse de forma oportunista por parte de usuarios sin licencia ( usuarios cognitivos) para establecer conexiones entre ellos, a través de una red cognitiva basada en REM. Para la construcción del REM se han usado muestras de campo tomadas en el área metropolitana de Barcelona, que han sido posteriormente procesadas con el objetivo de adaptarlas a la estructura REM. Se puede acceder a la información contenida en el REM a través de una API REST, que, además, permite administrarlo. La GUI ha sido implementada a través de una página web, que permite visualizar y administrar el REM. Finalmente, se ha añadido una interfaz que permite utilizar el REM para administrar dispositivos cognitivos simulados, con el objetivo de demostrar las capacidades de esta tecnología.[CATALÀ] Aquest treball detalla la construcció d'un REM (Radio Enviroment Map) de TV-WS (TV white spaces) a partir de mesures de canal preses a l'entorn de l’àrea metropolitana de Barcelona, i de una GUI per permetre la seva consulta. Un REM es una peça clau en la implementació d'una xarxa cognitiva, ja que proporciona als dispositius cognitius coneixement del medi radio en el que es troben, permetent als dispositius decidir quins canals han de fer servir, i quan els han d’utilitzar per operar de forma òptima. Els TV-WS son les zones espectrals que estan assignades a televisió, però no s'usen per a aquest servei des de la transició a l’estàndard DBTV, que va augmentar considerablement la eficiència espectral de les emissions de televisió deixant gran part de l'espectre assignat, sense utilitzar. Aquest espectre es podria utilitzar de forma oportunista per a usuaris sense llicencia (usuaris cognitius) per a establir comunicacions entre ells, mitjançant una xarxa cognitiva basada en REM. Per a la construcció del REM s'han utilitzat mesures de camp preses a l’àrea metropolitana de Barcelona, que han estat processades posteriorment per adaptar-se a l’estructura REM. La informació continguda al REM es pot consultar a través de una API REST, que a més a més es pot utilitzar per administrar el REM. La interfície de consulta del REM finalment ha estat construïda mitjançant una pàgina web que permet visualitzar i administrar el REM. A més a més s’ha creat una interfície que permet utilitzar el REM per administrar dispositius cognitius simulats amb l’objectiu de demostrar les capacitats de la tecnologia

    Wake-up radio: an enabler of wireless convergence

    Get PDF
    Nowadays, several wireless communication solutions targeted at low-power devices (e.g. sensors, actuators) compete for market dominance. As a consequence, the deployment of the Internet of Things is slowed by fragmentation. However, Cross-Technology Communication (CTC) has appeared as a solution capable of bridging the compatibility gap between non-interoperable devices. In this way, we propose using Wake-up Radio (WuR) to achieve high rate bidirectional CTC, introducing WuR assisted CTC (WuR-CTC). Although WuR was originally proposed to reduce radio power consumption, it provides a secondary communications channel that can be used for high-speed and bidirectional CTC. With WuRCTC, we demonstrate that WuR can lead to interoperability between non-compatible wireless devices, therefore, providing a compelling reason for the harmonization of the nascent WuR specifications. This article presents a WuR-CTC solution implemented on an heterogeneous testbed with IEEE 802.11 and IEEE 802.15.4 devices. The resulting testbed achieves reliable CTC with an effective throughput of 26.7 kbps. Moreover, the addition of WuR to the testbed devices provides energy savings, and, in a clear advantage over traditional duty-cycled solutions, allows devices to asynchronously maintain communications.Postprint (published version

    Design and implementation of a Wake-up Radio receiver for fast 250 kbps bit rate

    No full text
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wake-up radio (WuR) systems have appeared as a solution for reducing power consumption. As IEEE 802.11 is the preferred radio technology, IEEE 802.11 task group TGba focuses on the IEEE 802.11-based WuR standardization. We present an implementation of a wake-up receiver (WuRx), based on off-the-shelf components, using a microcontroller unit for decodification at the fastest bit rate of 250 kb/s allowed by TGba. The proof-of-concept that has been developed, does not aim at presenting an optimized power consumption solution for WuRx, but at enabling a comparative evaluation for several reception cases based on latency and power utilization. The evaluation of the performance shows the WuRx robustness in presence of frame receptions different from the expected for WuR operation or addressed to other WuRx in the surrounding area. This letter also presents the convenience of implementing a mechanism for avoiding consecutive erroneous WuRx identification matchings within the same WuR procedure

    An alternative to IEEE 802.11ba: wake-up radio with legacy IEEE 802.11 transmitters

    No full text
    Current standardization process for Wake-up Radio (WuR) within the IEEE 802.11 Working Group, known as the IEEE 802.11ba, has brought interest to the IEEE 802.11-related technologies for the implementation of WuR systems. This paper proposes a new WuR system, where the Wake-up Transmitter (WuTx) is based on the legacy IEEE 802.11 Orthogonal Frequency Division Modulation (OFDM) Physical Layer (PHY) specification. Using the IEEE 802.11, OFDM PHY makes it possible for an IEEE 802.11a/g/n/ac transmitter to operate as WuTx for this WuR system. The WuTx generates a Wake-up Signal (WuS) coded with an amplitude-based digital modulation, achieving a bit rate of 250 kbps. This modulation, which we call Peak-Flat modulation, can be received using low-power receivers. A simulated proof of concept of the WuTx based on the IEEE 802.11g is presented and evaluated using MATLAB WLAN Toolbox. A method to generate the Peak-Flat modulated WuS from an IEEE 802.11a/g standard-compliant transmitter, using only software-level access, is explained. In addition, two possible low-power Wake-up Receiver (WuRx) architectures capable of decoding the presented modulation are proposed. The design of those receivers is generic enough to be used as a reference to compare the performance of the Peak-Flat Modulation with the other state-of-the-art approaches. The evaluation results conclude that the Peak-Flat modulation has similar performance compared to the other IEEE 802.11 WuR solutions on the reference receivers. Moreover, this solution provides a notorious advantage: legacy OFDM-based IEEE 802.11 transmitters can generate the Peak-Flat modulated WuS
    corecore