35 research outputs found

    Development and first operation of a Cavity Ring Down Spectroscopy diagnostic in the negative ion source SPIDER

    Full text link
    The Neutral Beam Injectors of the ITER experiment will rely on negative ion sources to produce 16.7 MW beams of H/D particles accelerated at 1 MeV. The prototype of these sources was built and is currently operated in the SPIDER experiment (Source for the Production of Ions o Deuterium Extracted from an RF plasma), part of the Neutral Beam Test Facility of Consorzio RFX, Padua. In SPIDER, the H-/D- ion source is coupled to a three grids 100 kV acceleration system. One of the main targets of the experimentation in SPIDER is to uniformly maximize the extracted current density; to achieve this it is important to study the density of negative ions available in proximity of the ion acceleration system. In SPIDER, line-integrated measurements of negative ion density are performed by a Cavity Ring Down Spectroscopy (CRDS) diagnostic. Its principle of operation is based on the absorption of the photons of a laser beam pulse by H-/D- photo-detachment; the absorption detection is enhanced by trapping the laser pulse in an optical cavity, containing the absorbing medium (i.e. negative ions). The paper presents and discusses the CRDS diagnostic setup in SPIDER, including the first measurements of negative ion density, correlated to the main source parameters.Comment: 5 pages, 7 figures. Contributer paper for the HTPD 2020 conference. Accepted manuscrip

    Optimized in-situ window cleaning system by laser blow-off through optical fiber

    No full text
    An optimized in-situ window cleaning system by laser blow-off through optical fiber has been developed on the basis of a feasibility study previously presented. The beam generated from a Q-switched Nd:YAG laser (up to 330mJ output energy, pulse duration 5ns FWHM with 10Hz repetition rate) is launched into a high damage threshold optical fiber ( 1a\uf2=1mm) through an f=80mm lens kept in a sealed box at 1mbar pressure. The fiber output is focused on the coated surface of a vacuum window previously exposed to the plasma of the RFX-mod experiment. We investigate the energy density threshold necessary to ablate the impurity deposition substrate: above threshold a single laser pulse recovers ~95% of the window transmission before its exposure to the plasma, while below it the efficiency of the cleaning process is too poor. The system so conceived can clean completely the largest window on RFX-mod (10 4 mm 2 surface) in about 20minutes. We also present first results obtained firing the laser directly on a bundle of small core diameter fibers, showing performance similar to those attainable with commercial products

    A first characterization of the NIO1 particle beam by means of a diagnostic calorimeter

    No full text
    Powerful neutral beam injectors (NBI) are required as heating and current drive systems for tokamaks like ITER. The development of negative ion sources and accelerators (40 A; 1 MeV D- beam) in particular, is a crucial point and many issues still require a better understanding. In this framework, the experiment NIO1 (9 beamlets of 15 mA H− each, 60 kV) operated at Consorzio RFX started operation in 2014[1]. Both its RF negative ion source (up to 2.5 kW) and its beamline are equipped with many diagnostics [2]. For the early tests on the extraction system, oxygen has been used as well as hydrogen due to its higher electronegativity, which allows reaching currents large enough to test the beam diagnostics even without caesium injection. In particular a 1D-CFC (carbon-fibre-carbon composite) tile is used as a calorimeter to determine the beam power deposition by observing the rear surface of the tile with an infra-red camera; the same design is applied as for STRIKE [3], one of the diagnostics of SPIDER (the ITER-like ion source prototype [4]) whose facility is currently under construction at Consorzio RFX. From this diagnostic it is also possible to assess the beam divergence and thus the beam optics. The present contribution describes the characterization of the NIO1 particle beam by means of temperature and current measurements with different source and accelerator parameters

    Impurities removal by laser blow-off from in-vacuum optical surfaces on RFX-mod experiment

    No full text
    An in situ window cleaning system by laser blow-off through optical fiber has been developed on the basis of a feasibility study previously presented. The beam generated by a Q-switched Nd:YAG laser is launched in a vacuum box into a high damage threshold optical fiber through a lens. The fiber output is focused on the impurities-coated surface of a vacuum window exposed to the plasma of the RFX-mod experiment, and it is remotely controlled with an xy motion system to scan the entire surface. We first investigate the energy density threshold necessary to ablate the deposited impurity substrate on removed dirty windows: above threshold, a single laser pulse recovers 3c95% of the window transmission before its exposure to the plasma, while below it the efficiency of the cleaning process is too poor. The system so conceived was then used to clean the three collection windows of the Main Thomson scattering diagnostic on RFX-mod. We also present results obtained applying the same technique to the SiO-protected Al mirror used for the Zeff diagnostic: an energy threshold for efficient impurity removal without mirror damage is first identified, then ablation tests are executed and analyzed in terms of recovered reflectivity. The SIMS technique is used both with windows and mirror to study the composition of surfaces before and after the ablation

    CRISP : a compact RF ion source prototype for emittance scanner testing

    No full text
    A movable Allison type emittance scanner is being developed to characterize the phase-space distribution of the beamlets of spectral phase interferometry for direct electric-field reconstruction, the prototype RF negative ion source of the ITER heating neutral beam injector. To test the electronics and verify the capability of the device to resolve nearby beamlets, a compact RF ion source prototype has been set up, capable of accelerating 1 mA of helium ions up to a voltage of 2 kV. A commercial 100 W RF generator creates a plasma inside a Pyrex tube, with a density between 10(15) and 10(16) m(-3) and an electron temperature up to 15 eV. Three multi-aperture grids in accel-decel configuration extract and accelerate the ions, which are measured with a Faraday cup. We present in this paper the characterization of the ion source and its first operation, showing that it is suitable for the commissioning of the Allison scanner. Published under license by AIP Publishing

    CRISP: A compact RF ion source prototype for emittance scanner testing

    No full text
    A movable Allison type emittance scanner is being developed to characterize the phase-space distribution of the beamlets of spectral phase interferometry for direct electric-field reconstruction, the prototype RF negative ion source of the ITER heating neutral beam injector. To test the electronics and verify the capability of the device to resolve nearby beamlets, a compact RF ion source prototype has been set up, capable of accelerating 1 mA of helium ions up to a voltage of 2 kV. A commercial 100 W RF generator creates a plasma inside a Pyrex tube, with a density between 1015 and 1016 m-3 and an electron temperature up to 15 eV. Three multi-aperture grids in accel-decel configuration extract and accelerate the ions, which are measured with a Faraday cup. We present in this paper the characterization of the ion source and its first operation, showing that it is suitable for the commissioning of the Allison scanner

    Design and realisation of a remotely controlled positioning system in an atmospheric plasma torch for film deposition and plasma characterization

    No full text
    none10noneL.Lotto; P.Sonato; M.De Muri; R.Malutta; G.Serianni; L.Franchin; V.Cervaro; F.Dughiero; E.Sieni; M.BulloLotto, Luca; Sonato, Piergiorgio; DE MURI, Michela; R., Malutta; Serianni, Gianluigi; L., Franchin; V., Cervaro; Dughiero, Fabrizio; Sieni, Elisabetta; Bullo, Marc
    corecore