35 research outputs found

    Higgs Scalar-Tensor Theory for Gravity and the Flat Rotation Curves of Spiral Galaxies

    Full text link
    The scalar-tensor theory of gravity with the Higgs field as scalar field is presented. For central symmetry it reproduces the empirically measured flat rotation curves of galaxies. We approximate the galaxy by a polytropic gas sphere with the polytropic index Îł=2\gamma=2 and a massive core.Comment: 17 pages, 12 figure

    Can induced gravity isotropize Bianchi I, V, or IX Universes?

    Get PDF
    We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the non--minimal coupling of gravity and the scalar field. The analytical results that we found for the Brans-Dicke (BD) theory are now applied to the IG theory which has ωâ‰Ș1\omega \ll 1 (ω\omega being the square ratio of the Higgs to Planck mass) in a cosmological era in which the IG--potential is not significant. We find that the isotropization mechanism crucially depends on the value of ω\omega. Its smallness also permits inflationary solutions. For the Bianch V model inflation due to the Higgs potential takes place afterwads, and subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1

    Probing Yukawian gravitational potential by numerical simulations. I. Changing N-body codes

    Full text link
    In the weak field limit general relativity reduces, as is well known, to the Newtonian gravitation. Alternative theories of gravity, however, do not necessarily reduce to Newtonian gravitation; some of them, for example, reduce to Yukawa-like potentials instead of the Newtonian potential. Since the Newtonian gravitation is largely used to model with success the structures of the universe, such as for example galaxies and clusters of galaxies, a way to probe and constrain alternative theories, in the weak field limit, is to apply them to model the structures of the universe. In the present study, we consider how to probe Yukawa-like potentials using N-body numerical simulations.Comment: 17 pages, 11 figures. To appear in General Relativity and Gravitatio

    Reconstruction of the Dark Energy equation of state

    Full text link
    One of the main challenges of modern cosmology is to investigate the nature of dark energy in our Universe. The properties of such a component are normally summarised as a perfect fluid with a (potentially) time-dependent equation-of-state parameter w(z)w(z). We investigate the evolution of this parameter with redshift by performing a Bayesian analysis of current cosmological observations. We model the temporal evolution as piecewise linear in redshift between `nodes', whose ww-values and redshifts are allowed to vary. The optimal number of nodes is chosen by the Bayesian evidence. In this way, we can both determine the complexity supported by current data and locate any features present in w(z)w(z). We compare this node-based reconstruction with some previously well-studied parameterisations: the Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and the Felice-Nesseris-Tsujikawa (FNT). By comparing the Bayesian evidence for all of these models we find an indication towards possible time-dependence in the dark energy equation-of-state. It is also worth noting that the CPL and JBP models are strongly disfavoured, whilst the FNT is just significantly disfavoured, when compared to a simple cosmological constant w=−1w=-1. We find that our node-based reconstruction model is slightly disfavoured with respect to the Λ\LambdaCDM model.Comment: 17 pages, 5 figures, minor correction

    Stability analysis and Observational Measurement in Chameleonic Generalised Brans--Dicke Cosmology

    Full text link
    We investigate the dynamics of the chameleonic Generalised Brans--Dicke model in flat FRW cosmology. In a new approach, a framework to study stability and attractor solutions in the phase space is developed for the model by simultaneously best fitting the stability and model parameters with the observational data. The results show that for an accelerating universe the phantom crossing does not occur in the past and near future.Comment: 15 pages, 18 figure

    Non-minimal coupling of the scalar field and inflation

    Full text link
    We study the prescriptions for the coupling constant of a scalar field to the Ricci curvature of spacetime in specific gravity and scalar field theories. The results are applied to the most popular inflationary scenarios of the universe; their theoretical consistency and certain observational constraints are discussed.Comment: 23 pages, LaTex, no figures, to appear in Physical Review

    DESI 2024: Constraints on Physics-Focused Aspects of Dark Energy using DESI DR1 BAO Data

    No full text
    International audienceBaryon acoustic oscillation data from the first year of the Dark Energy Spectroscopic Instrument (DESI) provide near percent-level precision of cosmic distances in seven bins over the redshift range z=0.1z=0.1-4.24.2. We use this data, together with other distance probes, to constrain the cosmic expansion history using some well-motivated physical classes of dark energy. In particular, we explore three physics-focused behaviors of dark energy from the equation of state and energy density perspectives: the thawing class (matching many simple quintessence potentials), emergent class (where dark energy comes into being recently, as in phase transition models), and mirage class (where phenomenologically the distance to CMB last scattering is close to that from a cosmological constant Λ\Lambda despite dark energy dynamics). All three classes fit the data at least as well as Λ\LambdaCDM, and indeed can improve on it by Δχ2≈−5\Delta\chi^2\approx -5 to −17-17 for the combination of DESI BAO with CMB and supernova data, while having one more parameter. The mirage class does essentially as well as w0waw_0w_aCDM while having one less parameter. These classes of dynamical behaviors highlight worthwhile avenues for further exploration into the nature of dark energy
    corecore