153 research outputs found

    Design and application of oncolytic viruses for cancer immunotherapy

    Get PDF
    The approval of the first oncolytic virus (OV) for the treatment of metastatic melanoma and the recent discovery that the use of oncolytic viruses may enhance cancer immunotherapies targeted against various immune checkpoint proteins have attracted great interest in the field of cancer virotherapy. OVs are designed to target and kill cancer cells leaving normal cell unharmed. OV infection and concomitant cancer cell killing stimulate anti-tumour immunity and modulates tumour microenvironment towards less immunosuppressive phenotype. The intrinsic capacity of OVs to turn immunologically cold tumours into immunologically hot tumours, and to increase immune cell and cytokine infiltration, can be further enhanced by arming OVs with transgenes that increase their immunostimulatory activities and direct immune responses specifically towards cancer cells. These OVs, specifically engineered to be used as cancer immunotherapeutics, can be synergized with other immune modulators or cytotoxic agents to achieve the most potent immunotherapy for cancer.Peer reviewe

    Beyond Gene Delivery: Strategies to Engineer the Surfaces of Viral Vectors

    Get PDF
    There is an errata corrige made after the publication.Viral vectors have been extensively studied due to their great transduction efficiency compared to non-viral vectors. These vectors have been used extensively in gene therapy, enabling the comprehension of, not only the advantages of these vectors, but also the limitations, such as the activation of the immune system after vector administration. Moreover, the need to control the target of the vector has led to the development of chemical and non-chemical modifications of the vector surface, allowing researchers to modify the tropism and biodistribution profile of the vector, leading to the production of viral vectors able to target different tissues and organs. This review describes recent non-genetic modifications of the surfaces of viral vectors to decrease immune system activation and to control tissue targeting. The developments described herein provide opportunities for applications of gene therapy to treat acquired disorders and genetic diseases and to become useful tools in regenerative medicine.Peer reviewe

    Oncolytic Adenoviruses for Cancer Therapy

    Get PDF
    Many immuno-therapeutic strategies are currently being developed to fight cancer. In this scenario, oncolytic adenoviruses (Onc.Ads) have an interesting role for their peculiar tumor selectivity, safety, and transgene-delivery capability. The major strength of the Onc.Ads is the extraordinary immunogenicity that leads to a strong T-cell response, which, together with the possibility of the delivery of a therapeutic transgene, could be more effective than current strategies. In this review, we travel in the adenovirus (Ads) and Onc.Ads world, focusing on a variety of strategies that can enhance Onc.Ads antitumoral efficacy, passing through tumor microenvironment modulation. Onc.Ads-based therapeutic strategies constitute additional weapons in the fight against cancer and appear to potentiate conventional and immune checkpoint inhibitors (ICIs)-based therapies leading to a promising scenario.Peer reviewe

    Uncovering the Tumor Antigen Landscape : What to Know about the Discovery Process

    Get PDF
    According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored. Cancer immunotherapy mainly relies on the generation and stimulation of cytotoxic CD8 T lymphocytes (CTLs) within the tumor microenvironment (TME), priming T cells and establishing efficient and durable anti-tumor immunity. Therefore, there is a clear need to define and identify immunogenic T cell epitopes to use in therapeutic cancer vaccines. Naturally presented antigens in the human leucocyte antigen-1 (HLA-I) complex on the tumor surface are the main protagonists in evocating a specific anti-tumor CD8+ T cell response. However, the methodologies for their identification have been a major bottleneck for their reliable characterization. Consequently, the field of antigen discovery has yet to improve. The current review is intended to define what are today known as tumor antigens, with a main focus on CTL antigenic peptides. We also review the techniques developed and employed to date for antigen discovery, exploring both the direct elution of HLA-I peptides and the in silico prediction of epitopes. Finally, the last part of the review analyses the future challenges and direction of the antigen discovery field.Peer reviewe

    Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System

    Get PDF
    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen-presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)-like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signal-ingmediators.Peer reviewe

    Patient-Derived Organoids for Precision Cancer Immunotherapy

    Get PDF
    Cancer immunotherapy has revolutionized the way tumors are treated. Nevertheless, efficient and robust testing platforms are still missing, including clinically relevant human ex vivo tumor assays that allow pretreatment testing of cancer therapies and selection of the most efficient and safe therapy for a specific patient. In the case of immunotherapy, this testing platform would require not only cancer cells, but also the tumor microenvironment, including immune cells. Here, we discuss the applications of patient-derived tumor organoid cultures and the possibilities in using complex immune-organoid cultures to provide preclinical testing platforms for precision cancer immunotherapy.Peer reviewe

    408 oncolytic vaccines in combination with pd l1 blockade for the treatment of melanoma

    Get PDF
    The Immunological escape of tumors represents one of the main obstacles to the treatment of malignancies. The approval of drugs able to disrupt the immune suppressive pathways through anti-CTLA-4 monoclonal antibodies represented a milestone in the history of immunotherapy. However, treatment with these immune checkpoint inhibitors (ICIs) seems to be effective only in small cohorts of patients. It has been proposed that the efficacy of ICIs relies on the presence of an undergoing immunological response. For this reason, we hypothesized that oncolytic vaccines, able to elicit a tumor specific response, would synergize with anti-PD-L1 therapy. B16 murine melanomas were established in immunocompetent C57 mice. Then mice were treated with anti-PD-L1 monotherapy, PeptiCRAd (oncolytic vaccine) monotherapy or a combination of the two. The growth of the tumors was analyzed. At the end of the experiment, all the mice mice were euthanized and organs collected for immunological analysis. We investigated antigen-specific T-cell responses and immune suppressive background by flow cytometry and ELISPOT assays

    Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks

    Get PDF
    Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm2 (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 ± 100 and 14,559 ± 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 × 109 ± 0.2 and 1.75 × 109 ± 0.08 infectious particles of ONCOS-401 per cm2 of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses

    Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks

    Get PDF
    Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm2 (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 ± 100 and 14,559 ± 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 × 109 ± 0.2 and 1.75 × 109 ± 0.08 infectious particles of ONCOS-401 per cm2 of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses

    622. Oncolytic Adenoviruses Loaded With Active Drugs as a Novel Drug Delivery System for Cancer Therapy

    Get PDF
    L-carnosine (β-Ala-His) is a naturally occurring histidine dipeptide, normally found in brain, kidney and in large amounts in muscle. L-carnosine has biological functions, including antioxidant activity, ability to chelate metal ions, as well as anti-inflammatory and anti-senescence properties. Recent studies have demonstrated that 50-100 mM of L-carnosine decreases cell proliferation in a colon cancer cell line HCT116, bearing a mutation in codon 13 of the RAS proto-oncogene. In addition, pre-treatment with L-carnosine decreases the intracellular concentration of Adenosine Triphosphate (ATP) and Reactive Oxygen Species (ROS) and inhibits the cell cycle progression in the G1 phase. The proto-oncogene KRAS is mutated in a wide array of human cancers and is important both in tumour progression and resistance to anticancer drugs. To overcome treatment limitations due to the high intracellular concentration required we have hypothesized that L-carnosine can be conjugated on the capsid of oncolytic viruses. Oncolytic viruses are viruses that are able to replicate specifically in and destroy tumor cells and this property is either inherent or genetically-engineered. The association of viruses with specific drugs, would increase the efficacy of the treatment of human neoplasia due to the synergistic action of virus and drug. First we have developed a strategy to conjugate peptides on viral capsid, based on electrostatic interaction. Then, using different cancer cell lines we found that oncolytic virus coated with L-carnosine with a tail of positively charged polylysine was able to enhance a positive anticancer synergistic effect. Finally, in order to investigate the molecular mechanisms underlying the effect of tumor reduction by oncolytic virus coated with modified L-carnosine, we have used three different approaches. First, we have examined, in samples with virus alone, or in combination with L-carnosine, the oncolytic replication by evaluating the E1A expression, second the apoptotic mechanism by expression of specific genes and at end the autophagy regulation via the amount of LC3-II. In conclusion, we have developed a model to use oncolytic adenovirus as a scaffold to deliver active drugs. Once validated the proposed model could be used as a novel drug delivery system for cancer therapy
    • …
    corecore