45 research outputs found

    Muscle 31P-NMR in humans: estimate of bias and qualitative assessment of ATPase activity

    No full text
    A mathematical model is developed whereby the longitudinal magnetization of phosphocreatine (PC), ATP, Pi, and total phosphate (PT) can be calculated on the basis of assumed chemical rate constants (kappa i) and spin lattice relaxation times of the muscle PC in equilibrium ATP in equilibrium Pi exchange system. By means of this model, some unexplained 31P nuclear magnetic resonance (NMR) spectroscopy results from the literature (e.g., a decrease of PT in a closed system) could be explained simply on the basis of the physiological variability of kappa i. Moreover, appropriate model simulations indicate that 1) 31P-NMR spectra obtained with short relaxation delays may be influenced to various extents by the metabolic and physicochemical status of the muscle; 2) the assessment of kappa i by standard NMR spectroscopy techniques may be extremely critical; 3) delta PC/delta Pi, as obtained from conventional 31P-NMR spectra, may represent a sensible index of kappa 2 (the pseudo first-order chemical exchange rate constant of the adenosinetriphosphatase reaction); 4) delta PC/delta Pi changes as detected from sequential (short relaxation delays) 31P-NMR spectra obtained in humans during metabolic transients (e.g., during transition from rest to work and vice versa) may represent an index of transient changes of kappa 2

    Bioenergetic approach to transfer function of human skeletal muscle

    No full text
    A mathematical model analogous to Chance's "transfer function" was derived on the basis of the energy consumption principle, which is suitable to describe the energetics of human skeletal muscle during aerobic activity. The implications and the characteristics of this model are that 1) the half time of phosphocreatine (PCr) hydrolysis at the onset of a mechanical constant-load exercise is independent of the imposed charge, 2) the changes of O2 consumption in the muscle at steady state when changing workload are linearly related to PCr concentration, 3) the kinetics of the intracellular oxygen consumption during a rest-to-work transient are influenced by anaerobic glycolysis, 4) it may explain the PCr-time relationship of different muscles types (e.g., skeletal, heart, trained vs. untrained), 5) it allows one to interpret correctly the significance of the oxygen consumption kinetics in the rest-to-work transient at the lung level, and 6) it is conceived for in vivo applications
    corecore