24 research outputs found

    Second harmonic generation from strongly coupled localized and propagating phonon-polariton modes

    Full text link
    We experimentally investigate second harmonic generation from strongly coupled localized and propagative phonon polariton modes in arrays of silicon carbide nanopillars. Our results clearly demonstrate the hybrid nature of the system's eigenmodes and distinct manifestation of strong coupling in the linear and nonlinear response. While in linear reflectivity the intensity of the two strongly-coupled branches is essentially symmetric and well explained by their respective localized or propagative components, the second harmonic signal presents a strong asymmetry. Analyzing it in detail, we reveal the importance of interference effects between the nonlinear polarization terms originating in the bulk and in the phonon polariton modes, respectively.Comment: 7 pages, 4 figure

    Robust Nuclear Spin Polarization via Ground-State Level Anti-Crossing of Boron Vacancy Defects in Hexagonal Boron Nitride

    Full text link
    Nuclear spin polarization plays a crucial role in quantum information processing and quantum sensing. In this work, we demonstrate a robust and efficient method for nuclear spin polarization with boron vacancy (VB\mathrm{V_B^-}) defects in hexagonal boron nitride (h-BN) using ground-state level anti-crossing (GSLAC). We show that GSLAC-assisted nuclear polarization can be achieved with significantly lower laser power than excited-state level anti-crossing, making the process experimentally more viable. Furthermore, we have demonstrated direct optical readout of nuclear spins for VB\mathrm{V_B^-} in h-BN. Our findings suggest that GSLAC is a promising technique for the precise control and manipulation of nuclear spins in VB\mathrm{V_B^-} defects in h-BN.Comment: 6 pages, 4 figure

    2022 Roadmap on integrated quantum photonics

    Get PDF
    AbstractIntegrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering

    Integrated sources and detectors of nonclassical states of light in silicon nitride

    No full text
    The work presented in this thesis aims to integrate sources and detectors of nonclassical states of light into a single photonic chip. Correlated pairs of single photons are among the most used sources in many quantum optics and quantum information experiments but their integration with detectors still remains a challenging task. In the first part of the thesis we exploit the generation of correlated pairs of photons in the visible spectrum using an integrated Silicon Nitride microring resonator. As the fabrication process of our sources is fully compatible with back-end CMOS technology, we also discuss the unique possibility of integration with silicon avalanche photodectors to provide a platform for commercially available, fully integrated, analogue quantum simulator working at room temperature. The drawback of universal quantum computation with single photons is its probabilistic nature that increases the technological complexity to obtain complete on chip integration of all necessary components to prepare, manipulate and measure quantum states of light. On the other hand, quantum information processing with continuous variables is completely deterministic. Therefore, in the second part of this work we report design, fabrication and experimental verification of an integrated source of broadband squeezed state of light on a photonic chip. We numerically investigate the amount of obtained squeezing and spurious noise that prevents us to observe shot noise reduction at short sideband frequencies. Additionally, we propose a design to extend our work towards hybridization with discrete variables to obtain qubits that can be protected against errors

    Nanophotonic source of quadrature squeezing via self phase modulation

    No full text
    Squeezed light is optical beams with variance below the shot noise level. They are a key resource for quantum technologies based on photons, and they can be used to achieve better precision measurements and improve security in quantum key distribution channels and as a fundamental resource for quantum computation. Here, we demonstrate an integrated source of squeezing based on four-wave mixing that requires a single laser pump, measuring 0.45 dB of broadband quadrature squeezing at high frequencies. We identify and verify that the current results are limited by excess noise produced in the chip and propose ways to reduce it. Calculations suggest that an improvement in the optical properties of the chip achievable with existing technology can develop scalable quantum technologies based on ligh
    corecore