1,482 research outputs found

    MAIA (Movie Analysis in Action). A New Teaching Method in Media Literacy Education

    Get PDF
    AbstractMAIA (movie analysis in action) is a simple method in Media Literacy Education. It consists of a few simple operative steps, thanks to which you can design interesting learning situations to approach audiovisual text analysis with students. The method has been tested several times in last three years, in groups of young (16-18 years old) and adult students (23 years old and over). The main purpose of this teaching model is both to make the moment of “graphic transcription” of the audiovisual text more interesting, and to easily introduce the whole analysis process

    Materials Surface Science Applied to the Investigation of Cultural Heritage Artefacts

    Get PDF
    This is an open access article under the CC BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/International audienceThe skill of ancient artisans manufacturing artistic or everyday artworks surprises the modern material scientists. We show, through the study of archaeological pieces, how laboratory research instruments use enlightens the fabrication processes of unique items at antic periods. The specificity of surface science research favouring non-invasive means for investigations on museum objects is emphasised. The examples concern: Nanostructured layers on ceramic surface to obtain the so-called lustre effect, invented by ancient Islam potters; Intentional coloration of metallic objects by chemical patination, attested in Egypt on 2nd millenary BC and still applied by Japanese artisans; The history of gilding objects: leaf gilding, mercury gilding, and other processes; The Fresco technique, a perennial wall painting, known by ancient Roman and propagated through centuries. The examples open new fields belonging to the modern materials science, to understand the mechanism involved in processes with the constraint that one does not know all the fabrication steps

    Gilding for Matter Decoration and Sublimation. A Brief History of the Artisanal Technical Know-how

    No full text
    IJCS it is an open access journal. All content is freely available without charge to any user or his/her institutionInternational audienceThe process used to decorate art objects with thinner and thinner gold coatings varied during centuries. Foil or leaf metal gilding technology was complemented around the beginning of the Christian era by mercury gilding. Simultaneously was developed in some geographic areas the surface depletion process for gilded copper/silver alloys. This paper is motivated by the recent publication by the authors of a didactic opus devoted to the description and the discussion of the technical history of the various gilding procedures, based on the study by modern investigation techniques of a number of gilded museum objects. Through examples from laboratory studies on museum objects, the main evolution steps of gold application are described. A recent mechanical modelling work about gold leaf forming by beating is reported. The different coating processes are discussed, depending on the substrate nature and surface treatment before gilding. It includes high temperature firing for mercury gilding, or powder gilding, e.g. on Middle-Age Syria glass. The paper ends with a listing of the research perspectives open for the presently poorly developed study of the adhesion mechanisms between gold leaf and its substrate. It discusses the important issue of gold-metal interdiffusion during metal gilding processes involving a high temperature step

    Stress-induced stabilization of pyrolyzed polyacrylonitrile and carbon nanotubes electrospun fibers

    Get PDF
    The unique properties of graphitic carbons have gained widespread attention towards their development and application. Carbon materials can be synthesized by thermal decomposition and, more specifically, carbon pyrolysis from polymer precursors. The paper shows the pyrolysis process of polyacrylonitrile (PAN) in the presence of multi-walled carbon nanotubes (MWCNTs) according to different manufacturing process conditions. The electrospinning process of the PAN-MWCNTs solution on multi-plates collectors was firstly analyzed. The morphology and the particles arrangement of the electrospun fibers was studied under scanning and transmission electron microscopes. Moreover, the composite fibrous mats were characterized by RAMAN spectroscopy to identify the effects of a mechanical tension application during the thermal stabilization phase performed before the pyrolysis treatment to obtain carbon fibers from the precursor polymer. The results show that the graphitization of the pyrolyzed fibers is enhanced by the combination of MWCNTs and a mechanical stress applied during the thermal treatment

    Hybrid multi-layered scaffolds produced via grain extrusion and electrospinning for 3D cell culture tests

    Get PDF
    Purpose: The purpose of this paper is to focus on the production of scaffolds with specific morphology and mechanical behavior to satisfy specific requirements regarding their stiffness, biological interactions and surface structure that can promote cell-cell and cell-matrix interactions though proper porosity, pore size and interconnectivity. Design/methodology/approach: This case study was focused on the production of multi-layered hybrid scaffolds made of polycaprolactone and consisting in supporting grids obtained by Material Extrusion (ME) alternated with electrospun layers. An open source 3D printer was utilized, with a grain extrusion head that allows the production and distribution of strands on the plate according to the designed geometry. Square grid samples were observed under optical microscope showing a good interconnectivity and spatial distribution of the pores, while scanning electron microscope analysis was used to study the electrospun mats morphology. Findings: A good adhesion between the ME and electrospinning layers was achieved by compression under specific thermomechanical conditions obtaining a hybrid three-dimensional scaffold. The mechanical performances of the scaffolds have been analyzed by compression tests, and the biological characterization was carried out by seeding two different cells phenotypes on each side of the substrates. Originality/value: The structure of the multi-layered scaffolds demonstrated to play an important role in promoting cell attachment and proliferation in a 3D culture formation. It is expected that this design will improve the performances of osteochondral scaffolds with a strong influence on the required formation of an interface tissue and structure that need to be rebuilt

    micro structuring of titanium collectors by laser ablation technique a promising approach to produce micro patterned scaffolds for tissue engineering applications

    Get PDF
    Abstract Multi-scale micro-structured scaffolds can sustain attachment and orientation of different cells phenotypes. An innovative use of laser ablation technique to build micro-structured titanium surfaces to be used as collectors in both electrophoretic deposition and electrospinning processes was investigated. To produce micro-patterned scaffolds, a negative replica patterning was exploited by designing specific patterns to be laser ablated on titanium plates. This method allows the deposition of the scaffolds on the mold, thus reproducing the micro-features on the scaffold surface. The titanium surface morphology depending on ablation parameters was studied and the capability of the process in replicating the micro-pattern was characterized

    Design and Fabrication of Customized Tracheal Stents by Additive Manufacturing

    Get PDF
    Abstract Additive Manufacturing (AM) is already becoming part of our life from a technological, economic and social point of view. Nowadays, it is applied in several manufacturing sectors. In particular, AM shows huge opportunities in the medical field and for healthcare applications. Due to its capability to produce complex geometries directly working on medical 3D images and thanks to the possibility to 3D-print biocompatible materials, AM is a key technology for the fabrication both of external and internal medical devices. In particular, the use of AM for medical applications is typically articulated in three steps: 3D-scanning of the patient anatomy, segmentation the medical scan and elaboration through CAD software for the preparation of a STL file suitable for the AM process. One of the main research topic in this field is the definition and optimization of procedures that, taking precise data from an individual patient, could be applied to the design and fabrication of customized components for medical applications. Therefore, this paper presents a project aimed at the fabrication of customized tracheal stents starting from the actual patient anatomy. In particular, it follows an approach based on molds FDM fabrication followed by biocompatible silicone casting. Molds were designed to obtain a tracheal stent based the patient anatomical tracheal lumen and were fabricated using FDM technology. Moreover, since the surface roughness is one of the most critical aspects related to the FDM, the produced molds were finished with a chemical surface post-treatment based on the use of acetone vapours. Overall, the whole developed procedure results in an effective custom-made medical devices realization

    SWARM Optimization of Force Model Parameters in Micromilling

    Get PDF
    Because of the improvement of machine-tool and tool performances in micro cutting field, the interest on these processes is increasing. Therefore, researchers involved in micro manufacturing processes focused their attention on these types of processes with the aim of improving the knowledge on the phenomena occurring during micro cutting operations. The objective of this work is to develop a modelling procedure for forecasting cutting forces in micromilling considering the tool run-out and the cutting tool geometry. The designed modelling procedure combines information coming from a force model, an optimization strategy and some experimental tests. The implemented force model is based on specific cutting pressure and actual instantaneous chip section. The tool run-out and the cutting tool geometry were considered in the analytical model. The adopted optimization strategy was based on the Particles Swarm strategy due to its suitability in solving analytical non-linear models. The experimental tests consisted in realizing micro slots on a sample made of Ti6Al4V. The comparison between experimental and analytical data demonstrates the good ability of the proposed procedure in correctly defining the model parameters

    Apport de la microscopie Ă©lectronique sous incidence rasante Ă  l'Ă©tude des surfaces, application au laiton 70/30

    No full text
    10ème Congrès International d'Optique des Rayons X et de Microanalyse 10th International Congress on X-Ray Optics and MicroanalysisNational audienceOn montre combien la diffraction des électrons (100 keV) sous incidence rasante aide à la compréhension des données obtenues par spectrométrie Auger. On prend pour exemple l'étude d'une surface oxydée de laiton 70/30. Les résultats sont discutés, et confrontés à ceux obtenus en ESCA. L'influence du frottement sur la composition superficielle est observée

    Production of carbonized micro-patterns by photolithography and pyrolysis

    Get PDF
    The preparation of carbon micro-patterns is reported in this paper. Different carbon micro-patterns were created using photolithography of the epoxy-based negative photoresist SU-8. Photoresist patterns were optimized in terms of resolution and aspect ratio and subsequently subjected to pyrolysis to obtain carbonized and conductive 3D structures. The latter step requires the optimization of the resist cross-linking time as well as the temperature and time of the resist post-bake. This step is crucial in order to avoid any severe modification of the geometry of the patterns produced during the actual pyrolysis. By observing optical and scanning electron microscope images, the morphology of the structures before and after pyrolysis was studied and the same patterns were also characterized by a laser probe profilometer. Finally, the thus obtained carbon patterns on Si wafers were used to carry out cell culture tests with Neural Stem Cells (NSC). The adhesion and the arrangement of the stem cells were analyzed to verify the ability of the patterned substrates to guide the orientation and, therefore, the differentiation of the cells
    • …
    corecore