241 research outputs found

    Two-particle entanglement as a property of three-particle entangled states

    Full text link
    In a recent article [Phys. Rev. A 54, 1793 (1996)] Krenn and Zeilinger investigated the conditional two-particle correlations for the subensemble of data obtained by selecting the results of the spin measurements by two observers 1 and 2 with respect to the result found in the corresponding measurement by a third observer. In this paper we write out explicitly the condition required in order for the selected results of observers 1 and 2 to violate Bell's inequality for general measurement directions. It is shown that there are infinitely many sets of directions giving the maximum level of violation. Further, we extend the analysis by the authors to the class of triorthogonal states |Psi> = c_1 |z_1>|z_2>|z_3> + c_2 |-z_1>|-z_2>|-z_3>. It is found that a maximal violation of Bell's inequality occurs provided the corresponding three-particle state yields a direct ("all or nothing") nonlocality contradiction.Comment: REVTeX, 7 pages, no figure

    Independent Set Reconfiguration in Cographs

    Get PDF
    We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets II and JJ of a graph GG, both of size at least kk, is it possible to transform II into JJ by adding and removing vertices one-by-one, while maintaining an independent set of size at least kk throughout? This problem is known to be PSPACE-hard in general. For the case that GG is a cograph (i.e. P4P_4-free graph) on nn vertices, we show that it can be solved in time O(n2)O(n^2), and that the length of a shortest reconfiguration sequence from II to JJ is bounded by 4n−2k4n-2k, if such a sequence exists. More generally, we show that if XX is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in XX using disjoint union and complete join operations. Chordal graphs are given as an example of such a class XX

    Bayesian Nash Equilibria and Bell Inequalities

    Full text link
    Games with incomplete information are formulated in a multi-sector probability matrix formalism that can cope with quantum as well as classical strategies. An analysis of classical and quantum strategy in a multi-sector extension of the game of Battle of Sexes clarifies the two distinct roles of nonlocal strategies, and establish the direct link between the true quantum gain of game's payoff and the breaking of Bell inequalities.Comment: 6 pages, LaTeX JPSJ 2 column format, changes in sections 1, 3 and 4, added reference

    A feasible quantum optical experiment capable of refuting noncontextuality for single photons

    Full text link
    Elaborating on a previous work by Simon et al. [PRL 85, 1783 (2000)] we propose a realizable quantum optical single-photon experiment using standard present day technology, capable of discriminating maximally between the predictions of quantum mechanics (QM) and noncontextual hidden variable theories (NCHV). Quantum mechanics predicts a gross violation (up to a factor of 2) of the noncontextual Bell-like inequality associated with the proposed experiment. An actual maximal violation of this inequality would demonstrate (modulo fair sampling) an all-or-nothing type contradiction between QM and NCHV.Comment: LaTeX file, 8 pages, 1 figur

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent
    • …
    corecore