294 research outputs found

    The Search for Gravitational Waves

    Get PDF

    Gravitational waves: Perspectives of detection

    Get PDF
    With Giovanni Losurdo, the PI of Advanced Virgo, we recently dwelled on this subject in an invited review paper [1]. Here I first give a short introduction by answering in brief to a few basic and relevant questions, which I was often asked by colleagues not specifically working on gravitation. Then I highlight the main considerations discussed in [1], in a sort of guide for the reader, where more details and an extensive reference list can be found. For more complete info, I call the attention to a number of beautiful pictures, kindly provided by my colleagues, which I put on the IFAE website, but are not given here nor in [1]. After publication of [1], a few relevant developments occurred, especially in the long-term planning of experiments, on which I report here. To update the references would have resulted in adding some sort of ten percent more than those in [1], so I have added only a few, which I rate most recent and particularly relevant to the relative issue

    Non-linear axisymmetric pulsations of rotating relativistic stars in the conformal flatness approximation

    Full text link
    We study non-linear axisymmetric pulsations of rotating relativistic stars using a general relativistic hydrodynamics code under the assumption of a conformal flatness. We compare our results to previous simulations where the spacetime dynamics was neglected. The pulsations are studied along various sequences of both uniformly and differentially rotating relativistic polytropes with index N = 1. We identify several modes, including the lowest-order l = 0, 2, and 4 axisymmetric modes, as well as several axisymmetric inertial modes. Differential rotation significantly lowers mode frequencies, increasing prospects for detection by current gravitational wave interferometers. We observe an extended avoided crossing between the l = 0 and l = 4 first overtones, which is important for correctly identifying mode frequencies in case of detection. For uniformly rotating stars near the mass-shedding limit, we confirm the existence of the mass-shedding-induced damping of pulsations, though the effect is not as strong as in the Cowling approximation. We also investigate non-linear harmonics of the linear modes and notice that rotation changes the pulsation frequencies in a way that would allow for various parametric instabilities between two or three modes to take place. We assess the detectability of each obtained mode by current gravitational wave detectors and outline how the empirical relations that have been constructed for gravitational wave asteroseismology could be extended to include the effects of rotation.Comment: 24 pages, 20 figures; minor corrections, added extended discussion and one figure in one subsectio

    Experimental measurement of photothermal effect in Fabry-Perot cavities

    Get PDF
    We report the experimental observation of the photothermal effect. The measurements are performed by modulating the laser power absorbed by the mirrors of two high-finesse Fabry-Perot cavities. The results are very well described by a recently proposed theoretical model [M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, Phys. Rev. D 63 (2001) 082003], confirming the correctness of such calculations. Our observations and quantitative characterization of the photothermal effect demonstrate its critical importance for high sensitivity interferometric displacement measurements, as those necessary for gravitational wave detection.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Room temperature GW bar detector with opto-mechanical readout

    Full text link
    We present the full implementation of a room-temperature gravitational wave bar detector equipped with an opto-mechanical readout. The mechanical vibrations are read by a Fabry--Perot interferometer whose length changes are compared with a stable reference optical cavity by means of a resonant laser. The detector performance is completely characterized in terms of spectral sensitivity and statistical properties of the fluctuations in the system output signal. The new kind of readout technique allows for wide-band detection sensitivity and we can accurately test the model of the coupled oscillators for thermal noise. Our results are very promising in view of cryogenic operation and represent an important step towards significant improvements in the performance of massive gravitational wave detectors.Comment: 7 figures, submitted to Phys. Rev.

    Ion mobility discontinuities in superfluid helium: A test of the Huang-Olinto theory

    Get PDF
    A new method has been developed for making sensitive differential measurements of ion mobilities in liquid helium. Using this method, it has been possible to make a definitive test of the part of the Huang-Olinto theory intended to explain discontinuities in ion mobilities in superfluid helium. The theory has been found to be incorrect
    • …
    corecore