19 research outputs found
Influence of thermal fluctuations on the Nernst signal in superconducting (K,Ba)BiO3 single crystals
International audienceWe report on the Nernst effect, specific heat and transportmeasurements performed in high quality (K,Ba)BiO3 single crystals close to optimal doping (Tc ∼ 31 K). We show that a nonzero Nernst effect remains visible well above the upper critical field unambiguously deduced from the onset of the specific heat anomaly. This finite Nernst signal is attributed to fluctuations of the amplitude of the order parameter in a region where the free energy is smaller than kBT . Despite the absence of any vortex liquid phase (and hence of any significant phase fluctuations), the field and temperature dependence of the Nernst coefficient is very similar to the one obtained in electron-doped cuprates
First-Order Transition in the Magnetic Vortex Matter in Superconducting MgB2 Tuned by Disorder
International audienceThe field-driven transition from an ordered Bragg glass to a disordered vortex phase in singlecrystalline MgB2 is tuned by an increasing density of point defects, introduced by electron irradiation. The discontinuity observed in magnetization attests to the first-order nature of the transition. The temperature and defect density dependences of the transition field point to vortex pinning mediated by fluctuations in the quasiparticle mean free path, and reveal the mechanism of the transition in the absence of complicating factors such as layeredness or thermal fluctuations
Probing the exciton condensate phase in 1T-TiSe2 with photoemission
International audienceWe present recent results obtained using angle-resolved photoemission spectroscopy performed on 1T-TiSe2. Emphasis is put on the peculiarity of the bandstructure of TiSe2 compared to other transition metal dichalcogenides, which suggests that this system is an excellent candidate for the realization of the excitonic insulator phase. This exotic phase is discussed in relation to the BCS theory, and its spectroscopic signature is computed via a model adapted to the particular bandstructure of 1T-TiSe2. A comparison between photoemission intensity maps calculated with the spectral function derived for this model and experimental results is shown, giving strong support for the exciton condensate phase as the origin of the charge density wave transition observed in 1T-TiSe2. The temperature-dependent order parameter characterizing the exciton condensate phase is discussed, both on a theoretical and an experimental basis, as well as the chemical potential shift occurring in this system. Finally, the transport properties of 1T-TiSe2 are analyzed in the light of the photoemission results
Thickness dependence of the superconducting critical temperature in heavily doped Si:B epilayers
International audienceWe report on the superconducting properties of a series of heavily doped Si:B epilayers grown by gas immersion laser doping with boron content (nB) ranging from ∼3 × 1020 cm−3 to ∼6 × 1021cm−3 and thickness (d) varying between ∼20 nm and ∼210 nm. We show that superconductivity is only observed for nB values exceeding a threshold value (nc,S ) which scales as nc,S ∝ 1/d. The critical temperature (Tc) then rapidly increases with nB, largely exceeding the theoretical values which can be estimated by introducing the electron-phonon coupling constant (λe-ph) deduced from ab initio calculations into the McMillan equation. Surprisingly Tc(nB,d) is fully determined by the boron dose (nB × d) and can be well approximated by a simple Tc(nB,d) ≈ Tc,0[1 − A/(nB.d)] law, with Tc,0 ∼ 750 mK and A ∼ 8(±1) × 1015 cm−2
Fermi surface induced lattice distortion in NbTe
The origin of the monoclinic distortion and domain formation in the quasi
two-dimensional layer compound NbTe is investigated. Angle-resolved
photoemission shows that the Fermi surface is pseudogapped over large portions
of the Brillouin zone. Ab initio calculation of the electron and phonon
bandstructure as well as the static RPA susceptibility lead us to conclude that
Fermi surface nesting and electron-phonon coupling play a key role in the
lowering of the crystal symmetry and in the formation of the charge density
wave phase
Etude par photoémission et microscopie à effet tunnel<br />des relations entre propriétés structurales et<br />électroniques des interfaces Ce/Sc(0001) et Ag/Au(111)
In this thesis we have studied the structural and electronic properties of intermetallic interfaces by STM and angle-resolved photoemission (ARPES). In the first part we have studied the spin-orbit splitting (SOS) of the Shockley state in the Ag/Au(111) interface. Ag growth at 300 K follows a layer-by-layer mode, whereas annealing at higher temperatures leads to interdiffusion. ARPES measurements, supported by a modelisation of the interface, show that the SOS is proportional to the relative amounts of Au and Ag probed by the surface state wave function. This behaviour confirms the mainly atomic nature of the spin-orbit coupling in Shockley states. In the second part we have tried unsuccessfully to elaborate a strongly hybridized monocristalline a-Ce phase. RHEED measurements lead to the conclusion that the epitaxial film is in the weakly hybridized g phase, but ARPES measurements show a strong dispersive band near the Fermi level, arising from a surface state of d-symmetry.Dans cette thèse nous avons étudié les propriétés structurales et électroniques d'interfaces intermétalliques par STM et photoémission résolue en angle. La première partie est dédiée à l'étude du splitting de spin-orbite (SSO) de l'état de Shockley dans l'interface Ag/Au(111). A 300 K la croissance de l'Ag s'effectue couche-par-couche, et un recuit à plus haute température active l'interdiffusion. Les mesures de photoémission, étayées par une modélisation de l'interface, montrent que le SSO est proportionnel aux quantités relatives d'Au et d'Ag sondées par la fonction d'onde de l'état de surface, confirmant le caractère majoritairement atomique du couplage spin-orbite dans ces états. La deuxième partie est dédiée à l'étude du Ce, épitaxié sur Sc(0001) pour tenter d'obtenir la phase a. Les mesures RHEED concluent à la phase g faiblement hybridée, qui présente toutefois en photoémission une bande dispersive intense au niveau de Fermi, issue d'un état de surface de symétrie d
Etude par photoémission et microscopie à effet tunnel des relations entre propriétés structurales et électroniques des interfaces Ce/Sc(0001) et Ag/Au(111)
Dans cette thèse nous avons étudié les propriétés structurales et électroniques d'interfaces intermétalliques par STM et photoémission résolue en angle. La première partie est dédiée à l'étude du splitting de spin-orbite (SSO) de l'état de Shockley dans l'interface Ag/Au(111). A 300 K la croissance de l'Ag s'effectue couche-par-couche, et un recuit à plus haute température active l'interdiffusion. Les mesures de photoémission, étayées par une modélisation de l'interface, montrent que le SSO est proportionnel aux quantités relatives d'Au et d'Ag sondées par la fonction d'onde de l'état de surface, confirmant le caractère majoritairement atomique du couplage spin-orbite dans ces états. La deuxième partie est dédiée à l'étude du Ce, épitaxié sur Sc(0001) pour tenter d'obtenir la phase a. Les mesures RHEED concluent à la phase g faiblement hybridée, qui présente toutefois en photoémission une bande dispersive intense au niveau de Fermi, issue d'un état de surface de symétrie d.In this thesis we have studied the structural and electronic properties of intermetallic interfaces by STM and angle-resolved photoemission (ARPES). In the first part we have studied the spin-orbit splitting (SOS) of the Shockley state in the Ag/Au(111) interface. Ag growth at 300 K follows a layer-by-layer mode, whereas annealing at higher temperatures leads to interdiffusion. ARPES measurements, supported by a modelisation of the interface, show that the SOS is proportional to the relative amounts of Au and Ag probed by the surface state wave function. This behaviour confirms the mainly atomic nature of the spin-orbit coupling in Shockley states. In the second part we have tried unsuccessfully to elaborate a strongly hybridized monocristalline a-Ce phase. RHEED measurements lead to the conclusion that the epitaxial film is in the weakly hybridized g phase, but ARPES measurements show a strong dispersive band near the Fermi level, arising from a surface state of d-symmetry.NANCY1-SCD Sciences & Techniques (545782101) / SudocSudocFranceF
Vortex creep down to 0.3 K in superconducting Fe(Te,Se) single crystals
International audienceWe report on a study of the vortex creep in Fe1+δ(TexSe1−x ) single crystals (x = 0.5 and 0.4) down to 0.28 K (∼Tc/50) and up to μ0Ha = 2T. The relaxation of the current density [J (t )] has been measured during 20 hours and the decay of J (t ) can be well described by a J (t ) ∝ [ln(t/t0)]−1/μ law.We show that the relaxation exponent μ tends towards 0 forT <2K and μ0Ha < 0.1T [i.e. J (t ) → (t0/t)α] and increases for increasing T and/or Ha . Our measurements strongly suggest that the logarithmic creep rate R = −d ln(J )/d ln(t ) remains finite at zero temperature (R|T→0 → 2%) and hence that quantum creep plays a dominant role in the relaxation process at low temperature. A maximum is observed in both the temperature and field dependence of R(t = 100s,T,Ha ), which can be associated to a crossover from a single vortex (one-dimensional) to a bundle (three-dimensional) creep regime
Dynamically current-driven de Gennes -St James states in Metal-Superconductor junctions
We investigate the conductance of a Normal-Normal'-Superconductor (NN'S) junction, in which current injection destroys superconductivity in a small region N' of the superconductor, with a size varying with the applied voltage V. Voltage-dependent de Gennes-Saint James (dGSJ) bound states appearing in the N' slab lead to two distinct sets of conductance oscillations. We show that this effect significantly alters the conductance of systems for which κ 2 vF ∼ 10 9 m/s such as pnictides (κ and vF being the Ginzburg number and the Fermi velocity, respectively), and we discuss their consequences on the identification of the bosonic modes of strongly coupled superconductors