114 research outputs found

    Recent Approaches for Chemical Speciation and Analysis by Electrospray Ionization (ESI) Mass Spectrometry

    Get PDF
    In recent years, the chemical speciation of several species has been increasingly monitored and investigated, employing electrospray ionization mass spectrometry (ESI-MS). This soft ionization technique gently desolvates weak metal\u2013ligand complexes, taking them in the high vacuum sectors of mass spectrometric instrumentation. It is, thus, possible to collect information on their structure, energetics, and fragmentation pathways. For this reason, this technique is frequently chosen in a synergistic approach to investigate competitive ligand exchange-adsorption otherwise analyzed by cathodic stripping voltammetry (CLE-ACSV). ESI-MS analyses require a careful experimental design as measurement may face instrumental artifacts such as ESI adduct formation, fragmentation, and sometimes reduction reactions. Furthermore, ESI source differences of ionization efficiencies among the detected species can be misleading. In this mini-review are collected and critically reported the most recent approaches adopted to mitigate or eliminate these limitations and to show the potential of this analytical technique

    Morphology, rheological and mechanical properties of isotropic and anisotropic PP/rPET/GnP nanocomposite samples

    Get PDF
    The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight increase in the elastic modulus. However, it causes a slight decrease in elongation at break. Morphological analysis revealed a poor adhesion between the PP and PET phases. Moreover, GnPs distribute around the droplets of the PET phase with a honey-like appearance. Finally, the effect of the orientation on both systems gives rise not only to fibers with higher modulus values, but also with high deformability and a fibrillar morphology of the dispersed PET phase. A fragile-ductile transition driven by the orientation was observed in both systems

    Repetitive sequence distribution on Saguinus, Leontocebus and Leontopithecus tamarins (Platyrrhine, Primates) by mapping telomeric (TTAGGG) motifs and rDNA loci

    Get PDF
    Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic re-lationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ri-bosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedi-pus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16–17 and 19–22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phy-logenetic framework, and in addition to data from previous studies, we underline synapo-morphies and apomorphisms that appeared during the diversification of this group of New World monkeys

    Bio-phenols determination in olive oils: Recent mass spectrometry approaches

    Get PDF
    Extra virgin olive oil (EVOO) is largely used in Mediterranean diet, and it is also worldwide apprised not only for its organoleptic properties but also for its healthy effects mainly attributed to the presence of several naturally occurring phenolic and polyphenolic compounds (bio-phenols). These compounds are characterized by the presence of multiple phenolic groups in more or less complex structures. Their content is fundamental in defining the healthy qualities of EVOO and consequently the analytical methods for their characterization and quantification are of current interest. Traditionally their determination has been conducted using a colorimetric assay based on the reaction of Folin-Ciocalteu (FC) reagent with the functional hydroxy groups of phenolic compounds. Identification and quantification of the bio-phenols in olive oils requires certainly more performing analytical methods. Chromatographic separation is now commonly achieved by HPLC, coupled with spectrometric devices as UV, FID, and MS. This last approach constitutes an actual cutting-edge application for bio-phenol determination in complex matrices as olive oils, mostly on the light of the development of mass analyzers and the achievement of high resolution and accurate mass measurement in more affordable instrument configurations. After a short survey of some rugged techniques used for bio-phenols determination, in this review have been described the most recent mass spectrometry-based methods, adopted for the analysis of the bio-phenols in EVOOs. In particular, the sample handling and the results of HPLC coupled with low- and high-resolution MS and MS/MS analyzers, of ion mobility mass spectrometry and ambient mass spectrometry have been reported and discussed

    Sodium bis-(2-ethylhexyl) sulfosuccinate sepf-aggregation in vacuo: Molecular Dynamics simulation

    Get PDF
    Molecular dynamics (MD) simulations were conducted for systems in vacuo consisting of n AOT anions (bis(2-ethylhexyl)sulfosuccinate ions) and n 1 or n Na+ ions up to n = 20. For n = 15, positively charged systems with Li+, K+, and Cs+ cations were also considered. All systems were observed to form reverse micelle-like aggregates whose centre is occupied by cations and polar heads in a very compact solid-like way, while globally the aggregate has the form of an elongated and rather flat ellipsoid. Various types of statistical analyses were carried out on the systems to enlighten structural and dynamical properties including gyration radius, atomic pair correlation functions, atomic B-factor and moment of inertia tensor. For completeness and comparison the stability of reverse micelle is tested in the case of neutral n = 20 system in CCl4 solution

    Decoupled Acoustic and Visual Components in the Multimodal Signals of the Common Cuckoo (Cuculus canorus)

    Get PDF
    Because of its parasitic habits, reproduction costs of the common cuckoo (Cuculus canorus) are mostly spent in pre-laying activities. Female costs are limited to searching host nests and laying eggs, whereas, males spend time in performing intense vocal displays, possibly with territorial purpose. This last aspect, together with a sexual plumage dimorphism, points to both intra- and inter-sexual selections operating within this species. One element triggering sexual selection is a differential fitness accrued by different phenotypes. Before analyzing possible sexual selection mechanisms operating in cuckoos, it is therefore necessary to verify whether there is a variability among male secondary characters by describing and quantifying them. Here we aimed to quantitatively characterize the main two potential candidates of sexual selection traits, i.e., calls and displays, shown by males at perches. During the 2019 breeding season, in a site within the Po Plain, we both audio and video recorded cuckoo males at five different perches. We analyzed acoustic variables as well as display sequences searching for potential correlations. We found a significant variation among calls that could be clustered into four vocal types. We also found that no visual displays were associated with vocal displays; cuckoo males were either vocal and motionless or soundless and active. We discuss our results under the perspective of the potential value of sexual selection in brood parasites and its role in its parasitic habit

    Decoupled Acoustic and Visual Components in the Multimodal Signals of the Common Cuckoo (Cuculus canorus)

    Get PDF
    Because of its parasitic habits, reproduction costs of the common cuckoo (Cuculus canorus) are mostly spent in pre-laying activities. Female costs are limited to searching host nests and laying eggs, whereas, males spend time in performing intense vocal displays, possibly with territorial purpose. This last aspect, together with a sexual plumage dimorphism, points to both intra- and inter-sexual selections operating within this species. One element triggering sexual selection is a differential fitness accrued by different phenotypes. Before analyzing possible sexual selection mechanisms operating in cuckoos, it is therefore necessary to verify whether there is a variability among male secondary characters by describing and quantifying them. Here we aimed to quantitatively characterize the main two potential candidates of sexual selection traits, i.e., calls and displays, shown by males at perches. During the 2019 breeding season, in a site within the Po Plain, we both audio and video recorded cuckoo males at five different perches. We analyzed acoustic variables as well as display sequences searching for potential correlations. We found a significant variation among calls that could be clustered into four vocal types. We also found that no visual displays were associated with vocal displays; cuckoo males were either vocal and motionless or soundless and active. We discuss our results under the perspective of the potential value of sexual selection in brood parasites and its role in its parasitic habit

    Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering

    Get PDF
    Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration
    • …
    corecore