600 research outputs found

    Mass dependence of vector meson photoproduction off protons and nuclei within the energy-dependent hot-spot model

    Full text link
    We study the photoproduction of vector mesons off proton and off nuclear targets. We work within the colour dipole model in an approach that includes subnucleon degrees of freedom, so-called hot spots, whose positions in the impact-parameter plane change event-by-event. The key feature of our model is that the number of hot spots depends on the energy of the photon--target interaction. Predictions are presented for exclusive and dissociative production of ρ0\rho^{0}, J/ψ\mathrm{J/}\psi, and Υ(1S)\Upsilon(1S) off protons, as well as for coherent and incoherent photoproduction of ρ0\rho^{0} off nuclear targets, where Xe, Au, and Pb nuclei are considered. We find that the mass dependence of dissociative production off protons as a function of the energy of the interaction provides a further handle to search for saturation effects at HERA, the LHC and future colliders. We also find that the coherent photonuclear production of ρ0\rho^{0} is sensitive to fluctuations in the subnucleon degrees of freedom at RHIC and LHC energies.Comment: 19 pages, 4 figures. Typo in legend of figs. 1 and 2 correcte

    Energy dependence of dissociative J/ψ photoproduction as a signature of gluon saturation at the LHC

    Get PDF
    We have developed a model in which the quantum fluctuations of the proton structure are characterised by hot spots, whose number grows with decreasing Bjorken-x. Our model reproduces the F2(x,Q2) data from HERA at the relevant scale, as well as the exclusive and dissociative J/ψ photoproduction data from H1 and ALICE. Our model predicts that for Wγp≈500GeV, the dissociative J/ψ cross section reaches a maximum and then decreases steeply with energy, which is in qualitatively good agreement to a recent observation that the dissociative J/ψ background in the exclusive J/ψ sample measured in photoproduction by ALICE decreases as energy increases. Our prediction provides a clear signature for gluon saturation at LHC energies

    Vector meson production using the Balitsky-Kovchegov equation including the dipole orientation

    Get PDF
    In this proceedings a solution of the target-rapidity Balitsky-Kovchegov (BK) equation is presented considering the complete impact-parameter dependence, including the orientation of the dipole with respect to the impact-parameter vector. The target-rapidity formulation of the BK equation introduces non-locality in rapidity. Three different prescriptions are considered to take into account the rapidities preceding the initial condition. The solutions are used to compute the structure functions of the proton and the diffractive photo- and electro-production of J/ψJ/\psi off protons. The predictions agree well with HERA data, confirming that the target-rapidity Balitsky-Kovchegov equation with the full impact-parameter dependence is a viable tool to study the small Bjorken-xx limit of perturbative QCD at current facilities like RHIC and LHC as well as in future colliders like the EIC

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161
    corecore