18 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Arterial Stiffness Is Increased in Patients With Type 1 Diabetes Without Cardiovascular Disease: A potential role of low-grade inflammation

    No full text
    OBJECTIVE: To investigate the relationship between arterial stiffness and low-grade inflammation in subjects with type 1 diabetes without clinical cardiovascular disease. RESEARCH DESIGN AND METHODS: Sixty-eight patients with type 1 diabetes and 68 age- and sex-matched healthy subjects were evaluated. Arterial stiffness was assessed by aortic pulse wave velocity (aPWV). Serum concentrations of high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, and soluble fractions of tumor necrosis factor-α receptors 1 and 2 (sTNFαR1 and sTNFαR2, respectively) were measured. All statistical analyses were stratified by sex. RESULTS: Subjects with diabetes had a higher aPWV compared with healthy control subjects (men: 6.9 vs. 6.3 m/s, P < 0.001; women: 6.4 vs. 6.0 m/s, P = 0.023). These differences remained significant after adjusting for cardiovascular risk factors. Men with diabetes had higher concentrations of hsCRP (1.2 vs. 0.6 mg/L; P = 0.036), IL-6 (0.6 vs. 0.3 pg/mL; P = 0.002), sTNFαR1 (2,739 vs. 1,410 pg/mL; P < 0.001), and sTNFαR2 (2,774 vs. 2,060 pg/mL; P < 0.001). Women with diabetes only had higher concentrations of IL-6 (0.6 vs. 0.4 pg/mL; P = 0.039). In men with diabetes, aPWV correlated positively with hsCRP (r = 0.389; P = 0.031) and IL-6 (r = 0.447; P = 0.008), whereas in women with diabetes no significant correlation was found. In men, multiple linear regression analysis showed that the following variables were associated independently with aPWV: age, BMI, type 1 diabetes, and low-grade inflammation (R(2) = 0.543). In women, these variables were age, BMI, mean arterial pressure, and type 1 diabetes (R(2) = 0.550). CONCLUSIONS: Arterial stiffness assessed as aPWV is increased in patients with type 1 diabetes without clinical cardiovascular disease, independently of classical cardiovascular risk factors. In men with type 1 diabetes, low-grade inflammation is independently associated with arterial stiffness

    Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

    No full text
    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein b-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias’. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced b-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hypergly-caemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1
    corecore