226 research outputs found

    Rotational Instabilities and Centrifugal Hangup

    Full text link
    One interesting class of gravitational radiation sources includes rapidly rotating astrophysical objects that encounter dynamical instabilities. We have carried out a set of simulations of rotationally induced instabilities in differentially rotating polytropes. An nn=1.5 polytrope with the Maclaurin rotation law will encounter the mm=2 bar instability at T/∣W∣≳0.27T/|W| \gtrsim 0.27. Our results indicate that the remnant of this instability is a persistent bar-like structure that emits a long-lived gravitational radiation signal. Furthermore, dynamical instability is shown to occur in nn=3.33 polytropes with the jj-constant rotation law at T/∣W∣≳0.14T/|W| \gtrsim 0.14. In this case, the dominant mode of instability is mm=1. Such instability may allow a centrifugally-hung core to begin collapsing to neutron star densities on a dynamical timescale. If it occurs in a supermassive star, it may produce gravitational radiation detectable by LISA.Comment: 13 pages (includes 11 figures) and 1 separate jpeg figure; to appear in Astrophysical Sources of Gravitational Radiation, AIP conference proceedings, edited by Joan M. Centrell

    Evolving a puncture black hole with fixed mesh refinement

    Full text link
    We present an algorithm for treating mesh refinement interfaces in numerical relativity. We detail the behavior of the solution near such interfaces located in the strong field regions of dynamical black hole spacetimes, with particular attention to the convergence properties of the simulations. In our applications of this technique to the evolution of puncture initial data with vanishing shift, we demonstrate that it is possible to simultaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult and wave extraction is meaningful.Comment: 18 pages, 12 figures. Minor changes, final PRD versio

    Binary black hole merger in the extreme mass ratio limit

    Get PDF
    We discuss the transition from quasi-circular inspiral to plunge of a system of two nonrotating black holes of masses m1m_1 and m2m_2 in the extreme mass ratio limit m1m2≪(m1+m2)2m_1m_2\ll (m_1+m_2)^2. In the spirit of the Effective One Body (EOB) approach to the general relativistic dynamics of binary systems, the dynamics of the two black hole system is represented in terms of an effective particle of mass μ≡m1m2/(m1+m2)\mu\equiv m_1m_2/(m_1+m_2) moving in a (quasi-)Schwarzschild background of mass M≡m1+m2M\equiv m_1+m_2 and submitted to an O(μ){\cal O}(\mu) radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian results. We then complete this approach by numerically computing, \`a la Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle. Several tests of the numerical procedure are presented. We focus on gravitational waveforms and the related energy and angular momentum losses. We view this work as a contribution to the matching between analytical and numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special issue based around New Frontiers in Numerical Relativity conference, Golm (Germany), July 17-21 200
    • …
    corecore