58 research outputs found

    Class 1 Integrons in Environments with Different Degrees of Urbanization

    Get PDF
    BACKGROUND: Class 1 integrons are one of the most successful elements in the acquisition, expression and spread of antimicrobial resistance genes (ARG) among clinical isolates. Little is known about the gene flow of the components of the genetic platforms of class 1 integrons within and between bacterial communities. Thus it is important to better understand the interactions among "environmental" intI1, its genetic platforms and its distribution with human activities. METHODOLOGY/PRINCIPAL FINDINGS: An evaluation of two types of genetic determinants, ARG (sul1 and qacE1/qacEΔ1 genes) and lateral genetic elements (LGE) (intI1, ISCR1 and tniC genes) in a model of a culture-based method without antibiotic selection was conducted in a gradient of anthropogenic disturbances in a Patagonian island recognized as being one of the last regions containing wild areas. The intI1, ISCR1 genes and intI1 pseudogenes that were found widespread throughout natural communities were not associated with urbanization (p>0.05). Each ARG that is embedded in the most common genetic platform of clinical class 1 integrons, showed different ecological and molecular behaviours in environmental samples. While the sul1 gene frequency was associated with urbanization, the qacE1/qacEΔ1 gene showed an adaptive role to several habitats. CONCLUSIONS/SIGNIFICANCE: The high frequency of intI1 pseudogenes suggests that, although intI1 has a deleterious impact within several genomes, it can easily be disseminated among natural bacterial communities. The widespread occurrence of ISCR1 and intI1 throughout Patagonian sites with different degree of urbanization, and within different taxa, could be one of the causes of the increasing frequency of multidrug-resistant isolates that have characterized Argentina for decades. The flow of ARG and LGE between natural and clinical communities cannot be explained with a single general process but is a direct consequence of the interaction of multiple factors operating at molecular, ecological, phylogenetic and historical levels

    Novel environmental class 1 integrons and cassette arrays recovered from an on-farm bio-purification plant

    Get PDF
    Rapid dissemination and emergence of novel antibiotic resistance genes among bacteria are rising problems worldwide. Since their discovery in clinical isolates in the late 1980s, class 1 integrons have been found in a wide range of bacterial genera and have been extensively studied as contributors to dissemination of antibiotic resistance. The present study aimed to investigate the presence and structure of class 1 integrons in plasmid-carrying bacterial isolates obtained from a biopurification system used for decontamination of pesticide-contaminated water as well as their possible role as reservoir of antimicrobial resistance gene cassettes. A total of 35 representative isolates were screened for the presence of class 1 integron integrase encoded by intI1. PCR and DNA sequencing revealed the presence of six class 1 integrons with four variable regions: 5΄CS-aadA1b-3΄CS, 5΄CS-aadA2-3΄CS, 5΄CS-aadA11cΔ-3΄CS and 5΄CS-dfrB3-aadA1di-catB2-aadA6k-3΄CS, the last two being unseen arrays of antimicrobial resistance gene cassettes associated with novel environmental alleles of intI1. These four class 1 integrons were identified as being present in four different genera, including Ochrobactrum, and Variovorax, where class 1 integrons have not been previously reported. The results provide evidence of the biopurification systems as a tank of class 1 integron carrying strains and novel environmental class 1 integron integrases associated with antimicrobial resistance gene cassette arrays.Instituto de Biotecnología y Biología Molecula

    Presence of a Group II Intron in a Multiresistant Serratia marcescens Strain That Harbors Three Integrons and a Novel Gene Fusion

    No full text
    We analyzed the role of integrons in the dissemination of antibiotic resistance in a recent multiresistant clinical isolate, Serratia marcescens SCH88050909 (SCH909). This isolate harbors three integrons, all on a 60-kb conjugative plasmid. By PCR, hybridization, and sequencing analyses, we found that integron 1 has the dfrA1 and ant(3")-Ia cassettes. The first cassette in integron 2 contains the ant(2")-Ia gene, separated from its attC site (59-base element) by a 1,971-bp insert containing a group II intron; this intron codes for a putative maturase-reverse transcriptase on the complementary strand and is the first such intron to be found associated with an integron. The attC site is followed by a novel aminoglycoside resistance gene, ant(3")-Ii-aac(6′)-IId, which has been characterized for its bifunctional ANT(3")-I and AAC(6′)-II activities. DNA sequence analysis of this fused cassette suggests that insertion and excision due to the integrase activity could have an important role in the evolution of aminoglycoside resistance genes. This gene is followed by an unknown open reading frame with a typical attC site and a partial cassette composed of the beginning of the bla(OXA-10) cassette interrupted by IS1. The sequence downstream of IS1 revealed that the bla(OXA-10) cassette is incomplete and that the 3′ conserved segment of this integron is absent. Integron 3 is in a Tn1696-like transposon with the aac(3)-Ia cassette followed by three unknown cassettes and ant(3")-Ia. The presence of the group II intron and the relationship of group II introns in eubacteria with mobile elements suggest a possible role of this element in events such as cassette formation and/or plasmid evolution

    Novel Rearrangement of a Class 2 Integron in Two Non-Epidemiologically Related Isolates of Acinetobacter baumannii

    Get PDF
    Tn7::In2-8 contains sat2-aadB-catB2(ΔattC)-dfrA1-sat2-aadA1-orfX in the variable region of a class 2 integron embedded in the Tn7-like transposon. This novel transposon was inserted in its preferred site downstream of the glms gene in Acinetobacter baumannii. Acquisition of the pseudocassette catB2 could have arisen by a secondary-site integrase-mediated intermolecular recombination event

    Novel Insights about Class 2 Integrons from Experimental and Genomic Epidemiology▿

    No full text
    In order to contribute to the knowledge of the architecture and epidemiology of class 2 integrons, we performed a class 2 integron molecular survey in which we analyzed 726 isolates in two bacterial populations from environmental and nonepidemiologically related clinical samples, respectively, collected from 1982 to 2007. We recovered the intI2 gene from 130 of 726 isolates, most of which were clinical isolates, and only 1 (a psychrophilic Pseudomonas sp.) was from a water sample. Unlike the widespread distribution of class 1 integrons within Gram-negative bacilli, only Acinetobacter baumannii and Enterobacter cloacae harbored class 2 integrons at a high frequency in our collection. Class 2 integrons with six novel cassette arrays were documented. Characterization of the transposition module of Tn7, the genetic platform in which class 2 integrons have always been reported, showed tns modules with a mosaic genetic structure. A bioinformatic analysis performed with the tns genes present in sequence databases, the finding of intI2 not associated with tns genes, and the genetic examination of novel tns-like genes found in three isolates indicated the possibility of the independent evolution of the two components related to horizontal gene transfer, the class 2 integrons and the Tn7 transposons

    Novel Mobile Integrons and Strain-Specific Integrase Genes within Shewanella spp. Unveil Multiple Lateral Genetic Transfer Events within The Genus

    No full text
    Shewanella spp. are Gram-negative bacteria that thrive in aquatic niches and also can cause infectious diseases as opportunistic pathogens. Chromosomal (CI) and mobile integrons (MI) were previously described in some Shewanella isolates. Here, we evaluated the occurrence of integrase genes, the integron systems and their genetic surroundings in the genus. We identified 22 integrase gene types, 17 of which were newly described, showing traits of multiple events of lateral genetic transfer (LGT). Phylogenetic analysis showed that most of them were strain-specific, except for Shewanella algae, where SonIntIA-like may have co-evolved within the host as typical CIs. It is noteworthy that co-existence of up to five different integrase genes within a strain, as well as their wide dissemination to Alteromonadales, Vibrionales, Chromatiales, Oceanospirillales and Enterobacterales was observed. In addition, identification of two novel MIs suggests that continuous LGT events may have occurred resembling the behavior of class 1 integrons. The constant emergence of determinants associated to antimicrobial resistance worldwide, concomitantly with novel MIs in strains capable to harbor several types of integrons, may be an alarming threat for the recruitment of novel antimicrobial resistance gene cassettes in the genus Shewanella, with its consequent contribution towards multidrug resistance in clinical isolates

    Class 2 Integron with a Novel Cassette Array in a Burkholderia cenocepacia Isolate

    No full text
    Burkholderia cepacia complex (BCC) are gram-negative opportunistic emerging  pathogens associated with a poor prognosis for patients with cystic fibrosis (CF). Carbapenems and  ceftazidime are administrated to patients suffering from BCC infections, and trimethoprim-sulfamethoxazole has historically been the drug of choice. Recently, the acquisition of determinants to sulfamethoxazole located in the 3´-conserved region of class 1 integrons have been described in BCC isolates from CF patients. The goal of this study was to determine the presence of  class 1, 2 and 3 integrons in a Burkholderia cenocepacia (BC1) strain that was isolated from the sputum of a 14-years-old CF patient in a surgery and transplant center from Buenos Aires City, Argentina.Fil: Ramirez, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología; ArgentinaFil: Jorda Vargas, Liliana. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Área Parasitología; ArgentinaFil: Cagnoni, Viviana. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Área Parasitología; ArgentinaFil: Tokumoto, Marta. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Área Parasitología; ArgentinaFil: Centron, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Reservoir of Antimicrobial Resistance Determinants Associated with Horizontal Gene Transfer in Clinical Isolates of the Genus Shewanella▿

    Get PDF
    Although Shewanella is usually considered an environmental genus, different clinical infections have appeared in recent years (4, 7). Treatment of such infections is difficult due to the lack of knowledge concerning the natural antimicrobial resistance as well as the recommended antibiotic treatment of their infections (11). The aim of our study was to investigate the antimicrobial resistance mechanisms acquired by this genus in the nosocomial environment.Fil: Ramirez, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Merkier, Andrea Karina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Cátedra de Microbiología, Parasitología e Inmunología; ArgentinaFil: Almuzara, Marisa. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Fisiopatología y Bioquímica Clínica; ArgentinaFil: Vay, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Fisiopatología y Bioquímica Clínica; ArgentinaFil: Centrón, Daniela. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología; Argentin
    corecore