111 research outputs found

    Reflections on embedding safety throughout the process engineering program

    Get PDF
    Safety is an important part of being a well-rounded, responsible process engineer. It not only covers fundamental scientific knowledge but also a way of thinking and culture in how engineers approach their work, and is continually developed throughout the working life of a process engineer. However, how this safety learning can start to be imparted to engineering students in an academic environment is a challenge for educators. In this work the systems approach that has been taken as part of UCL's Integrated Engineering Program (IEP) teaching framework is examined. Within this framework, safety is embedded into the curriculum from the start in Year 1 and is continually extended and advanced throughout the process engineering program. As the first cohort of students graduate we reflect on how this has been implemented and received

    A system-theoretic, control-inspired view and approach to process safety

    Get PDF
    Accidents in the process industry continue to occur, and we do not seem to be making much progress in reducing them (Venkatasubramanian, 2011). Postmortem analysis has indicated that they were preventable and had similar systemic causes (Kletz, 2003). Why do we fail to learn from the past and make adequate changes to prevent their reappearance? A variety of explanations have been offered; operators' faults, component failures, lax supervision of operations, poor maintenance, etc. All of these explanations, and many others, have been exhaustively studied, analyzed, “systematized” into causal groups, and a variety of approaches have been developed to address them. Even so, they still occur with significant numbers of fatalities and injured people, with significant disruption of productive operations and frequently extensive destruction of the surrounding environment, both physical and social

    Incorporation of thermal explosion scenarios into the multilevel risk analysis procedure

    No full text
    The work's starting point is the multilevel risk analysis procedure (MLRAP), the difficulty of which sits comfortably between the easiest qualitative risk studies and the most complicated quantitative analysis. MLRAP was originally developed for use in explosive-handling plants. During the application of MLRAP, a gap in the procedure was found. The approach was not easily applicable to functional nodes with possible exothermic reactions. This article aims to the identification of a reasonable number of layer of protection analysis thermal explosion scenarios for such functional nodes. Two tools are utilized for this purpose: the Stoessel's concept of criticality classes and the use of adiabatic calorimetry results to classify functional nodes with the possibility of an exothermic reaction. The article modifies the original MLRAP so that for functional nodes where an exothermic reaction is possible, it identifies initiating events and scenarios depending on the criticality class and the type of reactor. A detailed flow chart complements the modification of MLRAP. The application of the modified MLRAP for the identification of thermal runaway scenarios not only in the explosive-handling processes is illustrated by two examples.Východiskem práce je postup víceúrovňové analýzy rizika (MLRAP), jehož obtížnost leží mezi nejjednoduššími kvalitativními studiemi rizika a nejsložitějšími kvantitativními analýzami. MLRAP byl původně vyvinut pro použití v podnicích, kde se zachází s výbušninami. Při aplikaci MLRAP byla v postupu zjištěna mezera. Přístup nebyl jednoduše aplikovatelný na funkční uzly s možnými exothermními reakcemi. Tento článek je zaměřen na identifikaci rozumného počtu scénářů tepelného výbuchu pro takovéto funkční uzly, které jsou vhodné pro analýzu vrstev ochrany. Pro tento účel jsou využity dva nástroje: Stoesselův koncept tříd kritičnosti a použití výsledků adiabatické kalorimetrie ke klasifikaci funkčních uzlů s možností exothermní reakce. Článek modifikuje původní MLRAP tak, že pro funkční uzly, kde je možná exothermní reakce, identifikuje iniciační události a scénáře v závislosti na třídě kritičnosti a typu reaktoru. Modifikaci MLRAP doplňuje podrobný vývojový diagram. Použití modifikované MLRAP pro identifikaci scénářů tepelného ujetí nejen v procesech zacházejících s výbušninami je ilustrováno dvěma příklady
    corecore