57 research outputs found

    Search for dark photons in rare Z boson decays with the ATLAS detector

    Get PDF
    A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139     fb − 1 of √ s = 13     TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon’s coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α D ϵ 2 , in the dark photon mass range of [5, 40] GeV except for the Υ mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments

    Dare to dream again: Reconstructing van Gogh’s Field with Irises near Arles

    Get PDF
    The colors of Field with Irises near Arles, painted by Van Gogh in Arles in 1888, have changed considerably. To get an idea of how this painting, as well as other works by Van Gogh, looked shortly after their production, the Revigo (Re-assessing Vincent van Gogh’s colors) research project was initiated. The aim of this project was to digitally visualize the original colors of paintings and drawings by Vincent van Gogh, using scientific methods backed by expert judgement where required. We adopted an experimental art technological approach and physically reconstructed Van Gogh’s full palette of oil paints, closely matching those he used to paint Field with Irises near Arles. Sixteen different paints were reconstructed, among which the most light-sensitive pigments and linseed oil, which is prone to yellowing, were produced according to 19th century practice. The resulting pigments and oils were chemically analyzed and compared to those used by Van Gogh. The ones that resembled his paints the most were used in the paint reconstructions. Other pigments were either obtained from the Cultural Heritage Agency’s collection of historical pigments, or purchased from Kremer Pigmente. The reconstructed paints were subsequently used to calculate the absorption K and scattering S parameters of the individual paints. Using Kubelka–Munk theory, these optical parameters could in turn be used to determine the color of paint mixtures. We applied this method successfully to digitally visualize the original colors of Field with Irises near Arles. Moreover, the set of optical parameters presented here can similarly be applied to calculate digital visualizations of other paintings by Van Gogh and his contemporaries
    corecore