30 research outputs found

    Bayesian network prior: network analysis of biological data using external knowledge

    Get PDF
    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods

    Endoventricular patch plasty for dyskinetic anteroapical left ventricular aneurysm increases systolic circumferential shortening in sheep

    Get PDF
    ObjectiveEndoventricular patch plasty (Dor procedure) has gained favor as a surgical treatment for heart failure associated with large anteroapical myocardial infarction. We tested the hypotheses that the Dor procedure increases systolic circumferential shortening and longitudinal shortening in noninfarcted left ventricular regions in sheep.MethodsIn 6 male Dorsett sheep, the left anterior descending coronary artery and its second diagonal branch were ligated 40% of the distance from the apex to the base. Sixteen weeks after myocardial infarction, a Dor procedure was performed with a Dacron patch that was 50% of the infarct neck dimension. Two weeks before and 2 and 6 weeks after the Dor procedure, animals underwent magnetic resonance imaging with tissue tagging in multiple short-axis and long-axis slices. Fully three-dimensional strain analyses were performed. All 6 end-systolic strain components were compared in regions 1 cm, 2 cm, 3 cm, and 4 cm below the valves, as well as in the anterior, posterior, and lateral left ventricular walls and the interventricular septum.ResultsCircumferential shortening increased from before the Dor procedure to 6 weeks after repair in nearly every left ventricular region (13/16). The greatest regional change in circumferential shortening was found in the equatorial region or 2 cm below the base and in the posterior wall (from 9.0% to 18.4%; P < .0001). Longitudinal shortening increased 2 weeks after the Dor procedure but then returned near baseline by 6 weeks after the Dor procedure.ConclusionThe Dor procedure significantly increases systolic circumferential shortening in nearly all noninfarcted left ventricular regions in sheep

    Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catheter visualization and tracking remains a challenge in interventional MR.</p> <p>Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance.</p> <p>Results</p> <p>The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) <it>in vitro </it>and <it>in vivo </it>in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous <it>in vitro </it>and <it>in vivo</it>.</p> <p>Conclusion</p> <p>We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.</p

    Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles

    Get PDF
    Purpose Mechanical interactions between muscles have been shown for in situ conditions. In vivo data for humans is unavailable. Global and local length changes of calf muscles were studied to test the hypothesis that local strains may occur also within muscle for which global strain equals zero. Methods For determination of globally induced strain in m. gastrocnemius in dissected human cadavers several knee joint angles were imposed, while keeping ankle joint angle constant and measuring its muscle-tendon complex length changes. In vivo local strains in both gastrocnemius and soleus muscles were calculated using MRI techniques in healthy human volunteers comparing images taken at static knee angles of 173° and 150°. Results Imposed global strains on gastrocnemius were much smaller than local strains. High distributions of strains were encountered, e.g. overall lengthened muscle contains locally lengthened, as well as shortened areas within it. Substantial strains were not limited to gastrocnemius, but were found also in synergistic soleus muscle, despite the latter muscle-tendon complex length remaining isometric (constant ankle angle: i.e. global strain = 0), as it does not cross the knee. Based on results of animal experiments this effect is ascribed to myofascial connections between these synergistic muscles. The most likely pathway is the neurovascular tract within the anterior crural compartment (i.e. the collagen reinforcements of blood vessels, lymphatics and nerves). However, direct intermuscular transmission of force may also occur via the perimysium shared between the two muscles. Conclusions Global strains imposed on muscle (joint movement) are not good estimators of in vivo local strains within it: differing in magnitude, as well as direction of length change. Substantial mechanical interaction occurs between calf muscles, which is mediated by myofascial force transmission between these synergistic muscles. This confirms conclusions of previous in situ studies in experimental animals and human patients, for in vivo conditions in healthy human subjects. © 2011 Springer-Verlag

    Bayesian network prior: network analysis of biological data using external knowledge

    Get PDF
    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods

    Evaluation of Medical Faculty Students's Time Management Skills

    No full text
    SUMMARY AIM: This study was carried out in order to determine medical faculty students&#65533; time management skills. METHOD: This is a cross sectional study and was carried out between 13 -31 May 2010. The universe of the study comprised 513 medical faculty students and data collection was performed by using the Time Management Inventory (TMI) from 420 students (%81,9 of the universe). For statistical analyses of data percentage, Kruskal-Wallis, One-way Anova, Mann-Whitney U, Student-t test and Pearson correlation analysis were used. RESULTS: Students&#65533; total time management points were minimum 44 and maximum 122. Total points&#65533; mean was 79,06&#177;14,07 and also the median was 78 of Time Management Inventory. Total time management points of the fifth class students were higher than the others. There was no correlation between total time management points and ages of the students. Also there is no statistically significant difference between the males and females at the TMI points. CONCLUSION: According to the other studies the medical faculty students&#65533; total TMI mean points are low. The reason of this situation may be the pension school that someone else is planning most of students&#65533; time and inadequacy of awareness, knowledge and skills about time management. Enhancing awareness with useful knowledge and being full of resource about time management is essential. [TAF Prev Med Bull 2012; 11(1.000): 5-10

    Electrophysiologic Characteristics of Wide QRS Complexes during Pharmacologic Termination of Sustained Supraventricular Tachycardias with Verapamil and Adenosine: Observations from Electrophysiologic Study

    No full text
    Methods: Patients with supraventricular tachycardia, undergoing electrophysiologic study were enrolled. 12 mg of adenosine or 10 mg of verapamil were administered during tachycardia, under continuous monitoring of intaracardiac and surface electrocardiograms. Electrocardiographic features of ventricular ectopy were noted
    corecore