782 research outputs found

    Dictionary Representation of Deep Features for Occlusion-Robust Face Recognition

    Get PDF
    Deep learning has achieved exciting results in face recognition; however, the accuracy is still unsatisfying for occluded faces. To improve the robustness for occluded faces, this paper proposes a novel deep dictionary representation-based classification scheme, where a convolutional neural network is employed as the feature extractor and followed by a dictionary to linearly code the extracted deep features. The dictionary is composed by a gallery part consisting of the deep features of the training samples and an auxiliary part consisting of the mapping vectors acquired from the subjects either inside or outside the training set and associated with the occlusion patterns of the testing face samples. A squared Euclidean norm is used to regularize the coding coefficients. The proposed scheme is computationally efficient and is robust to large contiguous occlusion. In addition, the proposed scheme is generic for both the occluded and non-occluded face images and works with a single training sample per subject. The extensive experimental evaluations demonstrate the superior performance of the proposed approach over other state-of-the-art algorithms

    High-Resolution ADCs Design in Image Sensors

    Get PDF
    This paper presents design considerations for high-resolution and high-linearity ADCs for biomedical imaging ap-plications. The work discusses how to improve dynamic spec-iļ¬cations such as Spurious Free Dynamic Range (SFDR) and Signal-to-Noise-and-Distortion Ratio (SNDR) in ultra-low power and high-resolution analog-to-digital converters (ADCs) including successive approximation register (SAR) for biomedical imaging application. The results show that with broad range of mismatch error, the SFDR is enhanced by about 10 dB with the proposed performance enhancement technique, which makes it suitable for high resolution image sensors sensing systems

    High Linearity SAR ADC for Smart Sensor Applications

    Get PDF
    This paper presents capacitive array optimization technique to improve the Spurious Free Dynamic Range (SFDR) and Signal-to-Noise-and-Distortion Ratio (SNDR) of Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) for smart sensor application. Monte Carlo simulation results show that capacitive array optimization technique proposed can make the SFDR, SNDR and (Signal-to-Noise Ratio) SNR more concentrated, which means the differences between maximum value and minimum value of SFDR, SNDR and SNR are much smaller than the conventional calibration techniques, more stable performance enhancement can be achieved, and the averaged SFDR is improved from 72.9 dB to 91.1 dB by using the capacitive array optimization method, 18.2 dB improvement of SFDR is obtained with only little expense of digital logic circuits, which makes it good choice for high resolution and high linearity smart sensing systems

    RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation

    Get PDF
    Detection of outliers present in noisy images for an accurate fundamental matrix estimation is an important research topic in the field of 3-D computer vision. Although a lot of research is conducted in this domain, not much study has been done in utilizing the robust statistics for successful outlier detection algorithms. This paper proposes to utilize a reprojection residual error-based technique for outlier detection. Given a noisy stereo image pair obtained from a pair of stereo cameras and a set of initial point correspondences between them, reprojection residual error and 3-sigma principle together with robust statistic-based Qn estimator (RES-Q) is proposed to efficiently detect the outliers and estimate the fundamental matrix with superior accuracy. The proposed RES-Q algorithm demonstrates greater precision and lower reprojection residual error than the state-of-the-art techniques. Moreover, in contrast to the assumption of Gaussian noise or symmetric noise model adopted by most previous approaches, the RES-Q is found to be robust for both symmetric and asymmetric random noise assumptions. The proposed algorithm is experimentally tested on both synthetic and real image data sets, and the experiments show that RES-Q is more effective and efficient than the classical outlier detection algorithms
    • ā€¦
    corecore