4 research outputs found

    Laplacian Projection Based Global Physical Prior Smoke Reconstruction

    Get PDF
    We present a novel framework for reconstructing fluid dynamics in real-life scenarios. Our approach leverages sparse view images and incorporates physical priors across long series of frames, resulting in reconstructed fluids with enhanced physical consistency. Unlike previous methods, we utilize a differentiable fluid simulator (DFS) and a differentiable renderer (DR) to exploit global physical priors, reducing reconstruction errors without the need for manual regularization coefficients. We introduce divergence-free Laplacian eigenfunctions (div-free LE) as velocity bases, improving computational efficiency and memory usage. By employing gradient-related strategies, we achieve better convergence and superior results. Extensive experiments demonstrate the effectiveness of our method, showcasing improved reconstruction quality and computational efficiency compared to existing approaches. We validate our approach using both synthetic and real data, highlighting its practical potential

    A Differential Diffusion Theory for Participating Media

    No full text
    We present a novel approach to differentiable rendering for participating media, addressing the challenge of computing scene parameter derivatives. While existing methods focus on derivative computation within volumetric path tracing, they fail to significantly improve computational performance due to the expensive computation of multiply-scattered light. To overcome this limitation, we propose a differential diffusion theory inspired by the classical diffusion equation. Our theory enables real-time computation of arbitrary derivatives such as optical absorption, scattering coefficients, and anisotropic parameters of phase functions. By solving derivatives through the differential form of the diffusion equation, our approach achieves remarkable speed gains compared to Monte Carlo methods. This marks the first differentiable rendering framework to compute scene parameter derivatives based on diffusion approximation. Additionally, we derive the discrete form of diffusion equation derivatives, facilitating efficient numerical solutions. Our experimental results using synthetic and realistic images demonstrate the accurate and efficient estimation of arbitrary scene parameter derivatives. Our work represents a significant advancement in differentiable rendering for participating media, offering a practical and efficient solution to compute derivatives while addressing the limitations of existing approaches

    Modeling Detailed Cloud Scene from Multi-source Images

    No full text
    Realistic cloud is essential for enhancing the quality of computer graphics applications, such as flight simulation. Data-driven method is an effective way in cloud modeling, but existing methods typically only utilize one data source as input. For example, natural images are usually used to model small-scale cloud with details, and satellite images and WRF data are used to model large scale cloud without details. To construct large-scale cloud scene with details, we propose a novel method to extract relevant cloud information from both satellite and natural images. Experiments show our method can produce more detailed cloud scene comparing with existing methods

    Modeling detailed cloud scene from multi-source images.

    No full text
    Realistic cloud is essential for enhancing the quality of computer graphics applications, such as flight simulation. Data-driven method is an effective way in cloud modeling, but existing methods typically only utilize one data source as input. For example, natural images are usually used to model small-scale cloud with details, and satellite images and WRF data are used to model large scale cloud without details. To construct large-scale cloud scene with details, we propose a novel method to extract relevant cloud information from both satellite and natural images. Experiments show our method can produce more detailed cloud scene comparing with existing methods
    corecore