243 research outputs found

    The spectrum of the Broad Line Region and the high-energy emission of powerful blazars

    Full text link
    High-energy emission (from the X-ray through the gamma-ray band) of Flat Spectrum Radio Quasars is widely associated with the inverse Compton (IC) scattering of ambient photons, produced either by the accretion disk or by the Broad Line Region, by high-energy electrons in a relativistic jet. In the modelling of the IC spectrum one usually adopts a simple black-body approximation for the external radiation field, though the real shape is probably more complex. The knowledge of the detailed spectrum of the external radiation field would allow to better characterize the soft-medium X-ray IC spectrum, which is crucial to address several issues related to the study of these sources. Here we present a first step in this direction, calculating the IC spectra expected by considering a realistic spectrum for the external radiation energy density produced by the BLR, as calculated with the photoionization code CLOUDY. We find that, under a wide range of the physical parameters characterizing the BLR clouds, the IC spectrum calculated with the black-body approximation reproduces quite well the exact spectrum for energies above few keV. In the soft energy band, instead, the IC emission calculated using the BLR emission shows a complex shape, with a moderate excess with respect to the approximate spectrum, which becomes more important for decreasing values of the peak frequency of the photoionizing continuum. We also show that the high-energy spectrum shows a marked steepening, due to the energy dependence of the scattering cross section, above a characteristic energy of 10-20 GeV, quasi independent on the Lorentz factor of the jet.Comment: 10 pages, 9 figures, accepted for publication in MNRA

    Multiwavelength Observations of the BL Lacertae Object PKS 2155-304 with XMM-Newton

    Get PDF
    The optical-UV and X-ray instruments on-board XMM-Ndewton provide an excellent opportunity to perform simultaneous observations of violently variable objects over a broad wavelength range. The UV and X-ray bright BL Lac object PKS 2155-304 has been repeatedly observed with XMM-Ndewton about twice per year. In this paper, we present a detailed analysis of the simultaneous multiwavelength variability of the source from optical to X-rays, based on the currently available XMM-Ndewton observations. These observations probed the intra-day multiwavelength variability at optical-UV and X-ray wavelengths of the source. The UV variability amplitude is substantially smaller than the X-ray one, and the hardness ratios of the UV to X-rays correlates with the X-ray fluxes: the brighter the source, the flatter the UV-X-ray spectra. On 2000 May 30-31 the UV and X-ray light curves were weakly correlated, while the UV variations followed the X-ray ones with no detectable lags on 2000 November 19-21. On 2001 November 30 the source exhibited a major X-ray flare that was not detected in the optical. The intra-day UV and X-ray variability presented here is not similar to the inter-day UV and X-ray variability obtained from the previous coordinated extensive multiwavelength campaigns on the source, indicating that different ``modes'' of variability might be operating in PKS 2155-304 on different timescales or from epoch to epoch.Comment: Accepted by Ap

    A New Equilibrium for Accretion Disks Around Black Holes

    Full text link
    Accretion disks around black holes in which the shear stress is proportional to the total pressure, the accretion rate is more than a small fraction of Eddington, and the matter is distributed smoothly are both thermally and viscously unstable in their inner portions. The nonlinear endstate of these instabilities is uncertain. Here a new inhomogeneous equilibrium is proposed which is both thermally and viscously stable. In this equilibrium the majority of the mass is in dense clumps, while a minority reaches temperatures 109\sim 10^9 K. The requirements of dynamical and thermal equilibrium completely determine the parameters of this system, and these are found to be in good agreement with the parameters derived from observations of accreting black holes, both in active galactic nuclei and in stellar binary systems.Comment: AAS LaTeX, accepted to Ap. J. Letter

    Low energy cut-offs and hard X-ray spectra in high-z radio-loud quasars: the Suzaku view of RBS315

    Full text link
    We present the results from the Suzaku observation of the powerful radio-loud quasar RBS315 (z=2.69), for which a previous XMM-Newton observation showed an extremely flat X-ray continuum up to 10 keV (photon index Gamma=1.26) and indications of strong intrinsic absorption (N_H~10^22 cm^{-2} assuming neutral gas). The instrument for hard X-rays HXD/PIN allows us a detection of the source up to 50 keV. The broad-band continuum (0.5-50 keV) can be well modeled with a power-law with slope Gamma=1.5 (definitively softer than the continuum measured by XMM-Newton) above 1 keV with strong deficit of soft photons. The low-energy cut-off can be well fitted either with intrinsic absorption (with column density N_H~10^22 cm^{-2} in the quasar rest frame) or with a break in the continuum, with an extremely hard (Gamma =0.7) power-law below 1 keV. We construct the Spectral Energy Distribution of the source, using also optical-UV measurements obtained through a quasi-simultaneous UVOT/SWIFT observation. The shape of the SED is similar to that of other Flat Spectrum Radio Quasars (FSRQs) with similar power, making this source an excellent candidate for the detection in gamma-rays by GLAST. We model the SED with the synchrotron-Inverse Compton model usually applied to FSRQs, showing that the deficit of soft photons can be naturally interpreted as due to an intrinsic curvature of the spectrum near the low energy end of the IC component rather than to intrinsic absorption, although the latter possibility cannot be ruled out. We propose that in at least a fraction of the radio-loud QSOs at high redshift the cut-off in the soft X-ray band can be explained in a similar way. Further studies are required to distinguish between the two alternatives.Comment: Accepted for publication in Ap

    The ASCA spectrum of the z=4.72 blazar, GB 1428+4217

    Get PDF
    The X-ray luminous quasar GB 1428+4217 at redshift 4.72 has been observed with ASCA. The observed 0.5-10 keV flux is 3.2E-12 erg/s/cm2. We report here on the intrinsic 4-57 keV X-ray spectrum, which is very flat (photon index of 1.29). We find no evidence for flux variability within the ASCA dataset or between it and ROSAT data. We show that the overall spectral energy distribution of GB 1428+4217 is similar to that of lower redshift MeV blazars and present models which fit the available data. The Doppler beaming factor is likely to be at least 8. We speculate on the number density of such high redshift blazars, which must contain rapidly-formed massive black holes.Comment: 5 pages, 3 Postscript figures, to appear in MNRA

    The redshift-dependence of gamma-ray absorption in the environments of strong-line AGN

    Get PDF
    The case of gamma-ray absorption due to photon-photon pair production of jet photons in the external photon environment like accretion disk and broad-line region radiation field of gamma-ray loud active galactic nuclei (AGN) that exhibit strong emission lines is considered. I demonstrate that this ''local opacity'', if detected, will almost unavoidably be redshift-dependent in the sub-TeV range. This introduces non-negligible biases, and complicates approaches for studying the evolution of the extragalactic background light with contemporary GeV instruments like e.g. the Gamma-ray Large Area Space Telescope (GLAST), etc., where the gamma-ray horizon is probed by means of statistical analysis of absorption features (e.g. Fazio-Stecker relation, etc.) in AGN spectra at various redshifts. It particularly applies to strong-line quasars where external photon fields are potentially involved in gamma-ray production.Comment: 19 pages, 5 figures; accepted for publication in Ap

    PMN J0525-3343: soft X-ray spectral flattening in a blazar at z=4.4

    Get PDF
    We report optical, radio and X-ray observations of a new distant blazar, PMN J0525-3343, at a redshift of 4.4. The X-ray spectrum measured from ASCA and BeppoSAX flattens below a few keV, in a manner similar to the spectra of two other z>4 blazars, GB 1428+4217 (z=4.72) reported by Boller et al and RXJ 1028.6-0844 (z=4.28) by Yuan et al. The spectrum is well fitted by a power-law continuum which is either absorbed or breaks at a few keV. An intrinsic column density corresponding to 2 x 10^23 H-atoms cm-2 at solar abundance is required by the absorption model. This is however a million times greater than the neutral hydrogen, or dust, column density implied by the optical spectrum, which covers the rest-frame UV emission of the blazar nucleus. We discuss the problems raised and suggest that, unless there is intrinsic flattening in the spectral distribution of the particles/seed photons producing X-rays via inverse Compton scattering, the most plausible solution is a warm absorber close to the active nucleus.Comment: 7 pages, 7 figures; MNRAS, in pres

    Stochastic wake field particle acceleration in Gamma-Ray Bursts

    Get PDF
    Gamma-Ray Burst (GRB) prompt emission can, for specific conditions, be so powerful and short-pulsed to strongly influence any surrounding plasma. In this paper, we briefly discuss the possibility that a very intense initial burst of radiation produced by GRBs satisfy the intensity and temporal conditions to cause stochastic wake-field particle acceleration in a surrounding plasma of moderate density. Recent laboratory experiments clearly indicate that powerful laser beam pulses of tens of femtosecond duration hitting on target plasmas cause efficient particle acceleration and betatron radiation up to tens of MeV. We consider a simple but realistic GRB model for which particle wake-field acceleration can first be excited by a very strong low-energy precursor, and then be effective in producing the observed prompt X-ray and gamma-ray GRB emission. We also briefly discuss some of the consequences of this novel GRB emission mechanism.Comment: 5 pages, 1 figure, submitted to MNRA

    Effect of manure application timing on roots, canopy and must quality in Vitis vinifera 'Merlot': a case study in Italy, North-East

    Get PDF
    The maintenance and improvement of soil fertility are among the most important management practices in viticulture. The system efficiency fertilization (SEF) which is a new concept based on a maximum utilization of organic fertilizers (i.e., manure) has become very important, especially within the organic viticulture sector, since other fertilizers are not allowed. The aim of this study was to determine the effect of different manure application timing on the root, shoot, and the grapevine yield, accumulation, and quality of biochemical compounds in the grape must since the timing effect was not previously investigated. The study was carried out on 'Merlot' variety organically cultivated, whose production aims at obtaining high-quality red wines. Three treatments were applied: NT (Non-Treated), T1 (Treated1- manure applied in late October) and T2 (Treated2 - manure applied in late February). After two study-years, the undertaken research has shown positive influences of soil manure application on the canopy features (T1), yield, and yield components (T2), along with a major accumulation of the primary metabolites (T2) (soluble solid, carbohydrates, chlorophyll). Yet, the secondary metabolites (polyphenols and anthocyanins) were promoted in the grape must at harvest time, especially when the manure was applied in late October (T2). Considering the benefits of manure application in the T2, after two study years, this timing is recommended in order to improve 'Merlot' grapes for high-quality red wine production
    corecore